LES ENSAMBLES GEOLOGIQUES DU MEXIQUE MERIDIONAL.
EVOLUTION GEODYNAMIQUE DURANT LE MESOZOIQUE
ET LE CENOZOIQUE

J. C. CARFANTAN*

RESUMEN

En este trabajo se definen diferentes dominios geológicos para el sur de México y América Central y se describe la evolución paleogeográfica y estructural del área. Durante el Mesozoico su historia es la de las relaciones entre el Tethys y el Pacífico. Durante el Cenozoico, su historia está asociada a la evolución del Pacífico Este. El conjunto de datos geológicos, geofísicos y oceanográficos permite establecer un modelo de evolución que comprende nueve etapas examinadas sucesivamente.

RESUME

On définit au sud du Mexique et en Amérique Centrale différents domaines géologiques dont on décrit l’évolution paléogéographique et structurale. Durant le Mesozoïque leur histoire est celle des relations entre la Tethys et le Pacifique. Durant le Cénozoïque elle est liée à l’évolution du Pacifique oriental. L’ensemble des données géologiques, géophysiques et océanographiques autorise l’établissement d’un modèle évolutif comprenant neuf étapes examinées successivement.

ABSTRACT

Different geological realms for the South of Mexico and for Central America are defined and their paleogeographic and structural evolutions described. During Mesozoic time their story is that of the relationship between the Tethys and the Pacific. Their Cenozoic story is linked with the evolution of the Eastern Pacific. The whole geological, geophysical and oceanographical data allow to propose an evolutive model, whose nine stages are successively examined.

* Laboratoire de Géologie Structurale et Appliquée, Université de Savoie, Boîte Postale 1104 - 73011 Chambéry-Cedex, France.
INTRODUCTION

Les études géologiques réalisées ces dernières années au sud du Mexique et en Amérique Centrale ont considérablement modifié l'interprétation paléogéographique et structurale de ces régions. Ainsi, tant au Mexique qu'au Guatemala, on a été reconnu des bassins à fond océanique, au moins en partie, et des séries de type arc insulaire d'âge Mésozoïque. Parallèlement, il a été possible de préciser le style et l'âge des deformations superposées. Ces nouvelles données, placées dans le cadre plus large des relations entre la Téthys et le Pacifique durant le Mésozoïque, entre le Pacifique, le sud du continent Nord-Américain et l'Amérique Centrale durant le Cénozoïque, permettent de proposer un modèle d'évolution géodynamique. Avant d'en examiner les étapes successives on décrira brièvement les différents ensembles géologiques du Mexique méridional et du Guatemala.

A. LES ENSEMBLES GEOLOGIQUES DU MEXIQUE MERIDIONAL ET DE LA PARTIE NORD DU GUATEMALA

(Fig. 1)

Entre l'axe néovolcanique transmexicain et le système décrochant Polochic-Motagua on peut distinguer, d'est en ouest, les ensembles géologiques suivants:

I. L'avant-pays Maya (Yucatán - El Petén - Belize)

L'avant-pays Maya est une région tabulaire d'altitude très modeste où seul affleure le Cénozoïque. Les terrains plus anciens sont cependant connus grâce à de nombreux forages pétroliers. Quelques-uns ont atteint le socle prémésozoïque. Ils ont rencontré des roches épimetamorphiques, chloritoschistes et quartzites, et magmatiques, granites et rhyolites dont on ne connaîtrait ni la distribution ni l'âge, hormis pour les rhyolites datées du Silurien inférieur (post-taconiques?). Sur ce socle repose une molasse continentale rouge, peu épaisse, équivalent de la formation Todos-Santos qui affleure largement au sud du Mexique et en Amérique Centrale. Elle est surmontée par une puissante série d'évaporites, anhydrite, gypse et halite, où s'intercalent des dolomites, calcaires dolomitiques et calcaires récifaux et pararécifaux. Elle est d'âge Néocomien à Eocène inférieur. Cette série peut dépasser 3000 mètres d'épaisseur ce qui implique, compte tenu de ses caractères, une subsidence lente mais continue durant le Crétacé et le début du Tertiaire.

L'Eocène supérieur est représenté par des calcaires littoraux qui passent vers l'ouest à des dépôts un peu plus profonds, marnes et argilites.
Fig. 1. Les différents domaines géologiques du sud du Mexique et du nord de l'Amérique Centrale.

II. Domaine plissé Olmèque (IIa), Chiapanèque (IIb) et Quiché (IIc).
V. Domaine Cordillérain occidental, Va. Arc Chontal.
Il semble que l'on ait partout une importante lacune de l'Oligocène et du Miocène inférieur traduisant une première émersion.

Le Miocène supérieur et le Pliocène sont à faciès calcaire littoral.

II. Domaine plissé Olmèque, Chiapanèque et Quiché

En arrière de l'avant-pays Maya, vient une large ceinture plissée dont l'altitude peut dépasser 3 500 mètres. Elle est constituée d'un socle prémésozoïque et d'une couverture Mésozoïque et Cénozoïque faite de sédiments continentaux ou de mer épicontinale, à dominante carbonatée.

1. Le socle :

Au Chiapas le socle pré-mésozoïque affleure largement en arrière de la chaîne, c'est à dire du côté Pacifique. Il comporte :

b) Des sédiments marins épicontinentaux d'âge Missisipien à Permien moyen (Hernández, 1973) déformés durant la phase appalachienne en plis droits ou légèrement inclinés vers le sud d'orientation W-E ou WNW- ESE.

c) Enfin et surtout un énorme batholite granitique et granodioritique post appalachien (Damon, 1976; Carfntan, 1977) allongé sur plus de 300 km le long de la côte Pacifique.

2. La couverture :

Reposant en discordance angulaire sur le socle paléozoïque la couverture débute par des conglomérats, grès et pelites rouges d'épaisseur variable, en général de plusieurs centaines de mètres, la formation Todos-Santos à signification de molasse post-appalachienne. Au sommet de la série s'intercalent des gypses et des dolomies. Ce niveau évaporitique discret à l'affleurement semble cependant continu.

La transgression mésozoïque, annoncée par des incursions marines en bordure du Golfe du Mexique au cours du Lias et du Jurassique moyen (forages du Tabasco et du Chiapas) ne commence franchement qu'à l'Oxfordien. Elle va s'étendre peu à peu vers l'ouest et le sud, l'ancien continent n'étant totalement submergé qu'à partir de l'Aptien supérieur.
Durant le Crétacé inférieur et jusqu’au Turonien se dépose une puissante série de calcaires récifaux ou pararécifaux souvent dolomitisés.

A la suite de l’émerison au cours du Santonien de la partie interne du domaine Chiapanèque, le Campano-Maestrichtien est caractérisé par d’importantes variations de faciès.

Une nouvelle surrection, accompagnée d’un découpage en horsts et grabens prend place à la fin du Crétacé et se poursuit durant le Paléocène. La mer est rejetée vers le nord. Les 2/3 du domaine Chiapanèque et la totalité du domaine Quiché demeurent émergés durant le Tertiaire, représentés, dans ces régions, par des molasses continentales rouges. Dans le domaine Olmèque et au nord du Chiapas se sédimentent, de l’Eocène au Miocène supérieur, d’épaisses séries molassiques marines. Le Pliocène et le Quaternaire sont caractérisés par des dépôts fluvio-lacustres discordants et par une activité volcanique au voisinage du Golfe (San Martin Tuxtla-El Chichón) et à l’intérieur du Chiapas (Venustiano-Carranza, San Cristóbal, Ocotepec). Ce volcanisme a probablement une signification différente à la fois de celui de l’axe néovolcanique (Robin et Demant, 1974; Robin, 1976) et de celui de la chaîne côtière Centro-américaine.

3. Tectoniques superposées :

a) Mouvements subhercyniens

b) Phase laramienne

A la fin du Crétacé et durant le Paléocène le domaine Chiapanèque est découpé en horsts et grabens dirigés NW-SE qui vont contrôler la sédimentation tertiaire. Dans les marnes paléocènes s’intercalent des brèches à gros blocs dont l’origine est sans doute liée à des séismes responsables de l’écroulement d’escarpements de failles. De l’Eocène au Miocène supérieur la sédimentation est principalement détritique, continentale sur les paléohorsts, marine dans les paléograbens.
c) Phase Miocène supérieur

C’est au Miocène supérieur que se produisit la phase tectonique majeure que nous appellerons phase Chiapanèque. La couverture, désolidarisée du socle au niveau des évaporites, dessine une succession de plis dissymétriques inclinés vers le NE, fréquemment en genou ou coffrés. Des complications, en particulier dans la région centrale du Chiapas, sont dues à l’existence d’une morphologie anté-plissement liée aux paléofailles laramiennes. Celles-ci ont été déformées en faille-plis, un exemple particulièrement clair étant fourni par le chevauchement du synclinal de Simojovel sur l’anticlinal d’Itzantun.

d) Néotectonique

Les paléofailles laramiennes, déformées au Miocène supérieur, ont été réactivées et jouent à l’heure actuelle en décrochements sénestres dirigés N 120°E que l’on peut suivre parfois sur plus de 150 km. Cette activité est sans nul doute liée à celle des grands décrochements de même sens qui limitent les plaques Nord-Américaine et Caraïbes (failles Polochic, Motagua, Jocotan-Chamelecon). Si les compartiments de part et d’autre des failles sont très différents, quant à l’âge et à la nature des terrains (contact calcaires crétaçés, molasse tertiaire généralement), quant au nombre et au style des plis, cela est dû essentiellement à la tectonique laramienne et Miocène supérieur et non à d’importants mouvements latéraux: En effet les sédiments fluvio-lacustres qui cachètent parfois les décrochements (région d’Ixtapa par exemple) présentent une fracturation mais ne sont que peu ou pas déplacés.

Le domaine plissé Olmèque, Chiapanèque et Quiché occupe dans l’ensemble des chaînes mexicaines une position externe. Elle se traduit par divers traits stratigraphiques (sédimentation mésozoïque de plateforme, existence de molasses marines cénozoïques par exemple) et structuraux (phase tectonique majeure d’âge Miocène supérieur) qui le différencient notamment de la Sierra Madre Orientale (sédimentation mésozoïque en partie de bassin, tertiaire continental, phase tectonique majeure laramienne) dont il n’est donc pas le prolongement méridional.

III. Domaine Cuicatèque

On appellera domaine Cuicatèque un édifice écaille en partie épimétamorphique et à ophiolites situé en arrière du domaine Olmèque et Chiapanèque et qui s’étend de Tehuacán, au nord, à l’Isthme de Tehuanatepec, au sud. Il comprend en particulier la Sierra de Juárez. Au niveau de l’Isthme de Tehuanatepec, en arrière du socle du Chiapas et jusqu’à la côte Pacifique d’Oaxaca entre Salina Cruz et Puerto Angel on y reconnaît 7 unités limitées par des failles chevauchantes (Carfantan, 1979). Les caractéristiques faunistiques, sédimentologiques et pétrographiques de ces unités
permettent de définir plusieurs zones paléogéographiques montrant le passage de la plateforme Chiapanèque à un bassin volcano-sédimentaire puis à un arc insulaire volcanique, l'arc Chontal.

1. Le socle :

Les premières unités ont pour socle le batholite post-appalachien du Chiapas et des Cornéennes conglomératiques et gréseuses probablement d'âge Paléozoïque supérieur. Dans le bassin volcano-sédimentaire on rencontre des écaillles basiques et ultrabasiques, diabases, grabbros, péridotites serpentinisées, attribuables à un complexe ophiolitique dilacéré. L'arc Chontal est établi sur des migmatites appartenant au complexe Xolapa (de Cserna, 1965). Le paléosome est constitué de micaschistes à biotite et d'amphibolites. Il ne correspond donc pas au socle granulitique Pré-cambrien d'Oaxaca, qui nulle part n'arrive à la côte. Par contre, il peut s'agir du socle paléozoïque inférieur (formation Acatlán). On notera cependant que la direction de foliation de la formation Acatlán, sensiblement NNW, SSE est très différente de celle des migmatites Xolapa d'orientation WNW - ESE à WE.

2. Couverture épimétamorphique :

Les formations épimétamorphiques de bassin et d'arc volcanique ont pu être datées grâce à des découvertes faunistiques (Carfantan, 1979). Elles montrent que le bassin cuicatèque s'est probablement ouvert à la fin du Jurassique, les couches datées les plus anciennes étant d'âge Berriasien-Valanginien. Le socle Chiapanèque n'ayant été transgressé totalement qu'à partir de l'Aptien supérieur, l'ouverture n'a pu se faire qu'à partir du Sud.

3. Couverture non métamorphique :

Les terrains métamorphiques sont recouverts en discordance par de puissantes formations marines détritiques d'âge Campano-Maestrichtien fortement plissées et cisailées mais non métamorphiques. Ces dépôts, de type flyschs, présentent une polarité de faciès bien marquée: Conglomératiques du côté Pacifique ils deviennent grése-conglomeratiques puis pélitico-gréseux vers les zones plus externes. Les éléments proviennent de la destruction de l'arc. Nous n'y avons pas trouvé d'éléments de socle.

4. Intrusifs :

5. Tectonique :

a) Phase subhercynienne

Les formations d’arc et de bassin ont subi une compression orientée NE-SW qui les a plissées et épimétamorphisées avant le dépôt du flysch Campano-Maestrichtien. En raison de l’âge des faunes rencontrées, de l’âge des intrusifs tectonisés et d’un âge K-Ar de 82.5 m.a. obtenu sur les phyllites, cette phase peut être située à la fin du Turonien. Comme nous l’avons vu son influence s’est étendue jusqu’au domaine Chiapanèque et Quiché.

b) Phase laramienne

À la fin du Crétacé un nouvel épisode compressif d’orientation d’abord submé-ridienne puis NE-SW détermine dans le flysch des plis serrés fortement inclinés vers le N ou le NE et induit tardivement d’important cisaillements qui affectent non seulement les formations mésozoïques mais aussi le socle. Ces structures arrivent obliquement à la côte. La côte Pacifique correspond donc à une troncature post- laramienne.

c) Phase Miocène moyen

d) Néotectonique

Les tectoglyphes et la distribution des failles de Riedel montrent qu’ici, comme dans le domaine externe, les accidents principaux sont des décrochements sénestres,
de direction N 105°E et N 70°E c’est-à-dire parallèles aux directions de la côte Pacifique entre Puerto Vallarta et Puerto Angel et Puerto Angel et Salina Cruz.

6. Extension du domaine Cuicatèque

Les formations volcano-détritiques du bassin cuicatèque se prolongent vers le nord au moins jusqu’à la région de Tehuacán et peut-être, au-delà de l’axe néovolcanique transmexicain jusqu’à Tolimán (renseignement oral M. Carrillo). Le métamorphisme s’atténue progressivement jusqu’à disparaître près de Tehuacán. Disparaissent également les corps ultrabasiques et l’on n’observe plus, au nord de l’amas serpentineux de Cuicatlán, que des pillow-lavas intercalés dans le tiers inférieur de la série.

Vers le sud ces mêmes formations peuvent être suivies jusqu’à Zanatepec où elles sont limitées par une importante faille qui borde à l’W le batholite du Chiapas sur toute sa longueur et les fait disparaître sous les alluvions de la plaine côtière.

Au Guatemala et au nord du Honduras entre les décrochements Motagua et Jocotán-Chamelecón on retrouve une puissante série volcano-sédimentaire et volcano-détritique épimétamorphique d’âge Crétacé (Wilson, 1974), la formation “El Tambor” au sens large. L’important développement des corps ophiolitiques traduit un caractère océanique plus marqué. L’histoire paléogéographique et tectonique de cette région est comparable à celle du domaine cuicatèque: On retrouve une phase tectonique subhercynienne accompagnée de métamorphisme et de magmatisme (intrusifs de Chiquimula et Chintaula), le dépôt de flyschs Campano-Maestrichtiens (formation Sepur) suivi d’une phase laramienne de plisements et de cisaillements responsables notamment du charriage des ophiolites sur le flysch, le dépôt de molasses continentales tertiaires déformées par des plis de fond enfin d’importants décrochements sénestres.

IV. Domain Oaxaquien

1. Le socle :

Le socle d’Oaxaca peut être divisé en trois ensembles limités par deux contacts tectoniques majeurs (Ortega, 1976) : De part et d’autre d’un contact NNW-SSE, à l’est le domaine Zapotèque, à l’ouest le domaine Mixtèque. Au sud d’un contact parallèle à la côte Pacifique, le complexe Xolapa (de Cserna, 1965).

a) Domaine Zapotèque

Le socle zapotèque est constitué de paragneiss et d’orthogneiss qui résultent du métamorphisme dans le faciès des granulites d’une épaisse série détritique à épisodes
carbonatés, traversée d'intrusions gabbro-anorthositiques (Bloomfield et Ortega, 1975; Ortega, 1976). Les datations radiochronologiques (Fries, 1962; Fries, 1966; Damon, 1972) montrent que le métamorphisme est d’âge Grenvillien (± 1.000 m.a.).

Les gneiss précambriens sont recouverts par quelques rares lambeaux de calcaires, argileux et grès qui ont fourni une riche faune d’âge Tremadoc à affinité européenne (Pantoja-Alor et Robison, 1967; Pantoja-Alor, 1970). Sur le Tremadoc repose en discordance angulaire une série détritique littorale épaisse de 650 m qui débute au Mississipien et monte probablement jusqu’au Permien moyen. Elle n’affleure également que très localement ayant été largement érodée avant la transgression mésozoïque.

b) Domaine Mixtèque

La sédimentation du groupe Acatlán s’est donc effectuée durant le Paléozoïque inférieur dans un bassin océanique. Par ses faciès et son métamorphisme le groupe Acatlán s’oppose ainsi radicalement aux formations de même âge du domaine zapotèque, littorales et non métamorphiques. Il contraste aussi avec les formations Paléozoïques inférieures du NW du Mexique également littorales. Le Précambrien de ces régions est tout à fait différent de celui d’Oaxaca : Il est constitué en effet d’un complexe cristallophyllien âgé de ± 1700 m.a. (Fries, 1962; Damon, 1975; Silver, 1979) sur lequel repose une épaisse série détritique non métamorphique d’âge Pré-cambrien supérieur.

Il apparaît donc que durant le Paléozoïque inférieur le domaine océanique Acatlán était situé entre deux continents d’histoire précambrienne différente. Ils sont entrés en collision avant le dépôt du Paléozoïque supérieur (formation Matzizi, Aguilera, 1896) qui repose en discordance sur les schistes Acatlán dans la région de Los Reyes Mezontla. Si l’on se base sur les rares données radiochronologiques la suture pourrait être Taconique. Cependant les données stratigraphiques ne s’opposent pas à ce qu’elle soit Acadienne.
c) Complexxe Xolapa

Le long de la Côte Pacifique, depuis Acapulco jusqu'à l'Isthme de Tehuantepec, affleurent des migmatites recoupées par de nombreux intrusifs métamorphisés ou non. Elles ont été très peu étudiées mais il semble que le paléosome, micaschistes dérivés de lutites et de grauwackes (de Cserna, 1965) ortho et métampibolites, puisse être rapproché de la formation Acatlán et de la série Chuacus du Guatemala. On a vu que dans la région isthmique elles supportent l'arc volcanique Chontal Crétacé inférieur.

Les datations radiométriques sont peu nombreuses (de Cserna et al., 1974; Halpem et al., 1974; Guerrero et al., 1978) et parfois criticables (méthode Pb-α). Elles ont fourni des âges dispersés : Cambrien moyen, Mississipien inférieur, Pennsylvanien supérieur, Permien, Jurassique moyen et Oligocène supérieur. Ils suggèrent l'histoire suivante : d'abord un épisode métamorphique Paléozoïque inférieur contemporain de celui du groupe Acatlán puis un réchauffement lié aux intrusions finies ou post-appalachiannes : les âges Mésozoïques tradiraient la migmatisation due à l'édification de l'arc Chontal. Enfin les âges Oligocènes supérieurs, obtenus sur des biotites, pourraient être reliés à l'individualisation de la plaque de Cocos et au début de sa subduction.

Entre Puerto Escondido et Oaxaca, dans la région de Juchatengo et de Ojo de Agua, le contact entre le complexe Xolapa et le domaine Zapotèque correspond à une zone étroite, extrêmement tectonisée où affleurent des roches volcan-sédimentaires épimétamorphiques de type arc insulaire, comparables à celles de l'Isthme. De puissants conglomerats orogéniques d'âge Sénonien inférieur à leur base (Carfantan, 1979) affleurent de part et d'autre du contact selon des directions très différentes : NW, SE au Nord, W, NW, E SE au Sud. Il semble donc que le contact tectonique entre le complexe Xolapa et les domaines Zapotèque et Mixtèque, suture au Paléozoïque inférieur, soit subhercynien et qu'il est rejoint en décrochement de façon importante durant le Cénozoïque.

2. La couverture :

Le socle Zapotèque et Mixtèque est recouvert par les dépôts molassiques continentaux post-appalachiens pouvant atteindre 1000 mètres de puissance à sa périphérie nord mais d'épaisseur réduite voire nulle dans sa partie centrale et sud. Ils ont fourni une riche flore d'âge Liasique (Aguilera, 1896; Wieland, 1914; Burkhardt, 1930; Maldonado, 1948; Erben, 1956).

Des intercalations lagunaires et marines, d'âge Bajocien supérieur et Bathonien inférieur (Erben, 1956) annoncent la transgression oxfordienne qui s'étend vers
l'est jusqu'à la région de Chilpancingo (de Cserna, 1965) mais ne recouvre pas la partie centrale et sud du massif. Il ne sera totalement submergé qu'à partir de l'Albiens. La sédimentation jusqu'alors à dominante détritique devient carbonatée, pelagique sur la marge orientale, néritique ailleurs. Durant le Sénonien émerge le sud du massif. Sur sa bordure occidentale se dépose, dans un bassin assez peu profond, une puissante série gréso-pelitique flyschoïde (Fries, 1960).

3. Tectonique

Le domaine Oaxaquienien, compris durant le Mésozoïque entre le bassin Cuicatèque et le bassin post-arc cordillérian, a eu un comportement tectonique rigide. Le socle Précambrien cisailé et mylonitisé à l'est d'un accident vertical Teotitlán del Camino-Oaxaca (faille de Cuicatlán) chevauche les ophiolites et les sédiments du bassin Cuicatèque. La couverture n'est franchement désolidarisée du socle qu'à la périphérie du massif. La phase subhercynienne est responsable de l'émerison de sa partie centrale et sud. Les plis de couverture et les cisaillements de socle sont d'âge laramien.

V. Domaine Cordillerain Occidental

Plus à l'ouest en effet vient un puissant ensemble volcanique trachyandésitique et volcano-détritique en partie métamorphique qui affleure en bordure de la côte Pacifique de Zihuataneco à l'entrée du Golfe de Californie. On y a rencontré des ammonites et des rudistes d'âge Jurassique terminal et Crétacé inférieur (Campa, 1978) et des pistes de dinosauriens de même âge (Ferrusquía-Villafranca et al., 1978).

Ces formations prolongent vers le sud l'arc Alisitos (Gastil et al., 1975) de Basse Californie et de Sinaloa (Bonneau, 1977). Elles sont largement cachetées par des dépôts molassiques rouges cénozoïques et par le volcanisme ignimbritique Oligocène de la Sierra Madre Occidentale.

On reconnaît, là encore, deux phases tectoniques crétacées (Tardy, 1980), l'une subhercynienne accompagnée d'un léger métamorphisme et suivie de magmatisme (Larsen et al., 1958), l'autre laramienne, nouveau plissement et écaillage.
Au sud du Mexique, à la différence de la Basse Californie et du Costa-Rica on ne connaît pas, à l’ouest de l’arc volcanique, de témoins de la paléocroûte mésozoïque Pacifique.

B. EVOLUTION DU MEXIQUE MERIDIONAL ET DE L’AMÉRIQUE CENTRALE DURANT LE MESOZOIQUE ET LE CENOZOIQUE.

I. Configuration Ante-Oxfordienne

Les tentatives d’ajustement géométrique des continents avant le Mesozoïque se heurtent à une difficulté majeure : Le recouvrement du nord de l’Amérique du Sud par l’Amérique Centrale et le sud du Mexique. Cette difficulté est levée si :

2) On déplace vers le NW l’ensemble ainsi formé selon un linéament allant de Los Angeles au Golfe du Mexique, passant par Chihuahua et Monterrey.

Fig. 2. Configuration anté-oxfordienne.
Si l'on considère généralement que les failles qui limitent au nord l'Amérique Centrale sont des décrochements sénestres prolongés vers l'est par la fosse de Bartlett jusqu'à la fosse de Porto-Rico (Taber, 1922; Hess, 1938; Woodring, 1954; Mc Birney, 1963; Meyerhoff, 1966; Dengo, 1968; Kesler, 1971; Malfait et Dinkelman, 1972) il y a désaccord des auteurs quant à l'âge et à l'importance relative du déplacement. Ceci notamment parce que l'on ne connaissait pas leur prolongement occidental et qu'il semblait qu'elles n'affectaient que peu ou pas le Batholite paléozoïque du Chiapas. Or on a pu montrer qu'elles se prolongent au moins jusqu'à la Côte Pacifique et qu'au Mexique, comme au Guatemala, elles mettent au contact des domaines géologiques très différents (Carfantan, 1976). Par ailleurs, on a vu que la troncature des côtes mexicaines méridionales à la hauteur de la fosse d'Acapulco est post-laramienne. Rien n'interdit donc de supposer un coulissage de 800 km vers l'Est de l'Amérique Centrale durant le Cénozoïque, qui explique la troncature des côtes sud du Mexique et permet de rétablir la continuité des domaines paléogéographiques et structuraux du Mexique méridional et de l'Amérique Centrale.

II. Oxfordien-Kimmeridgien

La transgression Mésozoïque d'origine téthysienne est annoncée par des intercalations marines dans la molasse post-appalachienne de la périphérie du Golfe du Mexique et par d'épais dépôts salifères. Ils sont également connus dans le domaine marin du Golfe où ils reposent, à l'ouest, au nord et au sud sur une croûte amincie, mais non sur la véritable croûte océanique de la région centrale (Buffler et al., 1980). On y a trouvé des pollens d'âge Jurassique moyen à supérieur (Kirkland et Gerhard, 1971). L'expansion océanique est donc post-Jurassique moyen et commence très probablement à l'Oxfordien : C'est en effet à cette époque que débute le régime marin franc aussi bien dans la Sierra Madre Orientale qu'au sud du Mexique. La mer s'avance dans des grabens en cours de formation ou des zones déjà déprimées. C'est le cas de la région isthmique où existait un paléograben partiellement comblé.
par des sédiments continentaux sur lesquels repose l'Oxfordien (de part et d'autre de l'Isthme affleure le batholite Paléozoïque du Chiapas, ce qui exclut, à ce niveau, un important déplacement du bloc Yucatán-Chiapas, voire une collision comme on l'a parfois supposé).

De l'Oxfordien au Kimméridgien la transgression téthysienne s'étend vers l'ouest et vers le sud mais il n'y a pas communication avec le Pacifique.

Au nord du linéament Caltam, la subduction du Pacifique engendre un volcanisme andésitique sur la bordure californienne (Rangin, 1978). Au sud il n'y a pas d'évidence d'une marge active avant le Portlandien. Le linéament Caltam apparaît ainsi comme une faille transformante entre le rift téthysien et la fosse Pacifique. Son jeu sénestre va permettre le déplacement relatif vers l'Est de 800 km du bloc Mexique-Amérique Centrale. Simultanément d'importants décrochements dextres ou sénestres parallèles au linéament Caltam décalent l'orogène Marathon-Ouachita-Appalaches.

III. Kimmeridgien-Portlandien

L'ouverture au niveau du Golfe du Mexique et l'activité des failles qui lui sont liées cesse au Kimméridgien. À partir de cette époque le Golfe du Mexique va évo-
Fig. 4. Etape Kimméridgien-Portlandien.

luer en bassin subsident à sédimentation pélagique entraînant la subsidence, plus lente, du domaine Maya.

La progression vers l’est de la “Téthys de la reconquête” (Aubouin et al., 1977) s’effectue alors plus au sud, à la hauteur du Guatemala. Ce brusque changement de direction est contemporain du début de l’ouverture de l’Atlantique sud et a été accompagné d’une crise tectonique compressive dans le domaine Caraïbe (Blanchet et Stephan, 1980) et Pacifique (phase névadienne).

Des formations volcanogènes d’âge Portlandien ont été reconnues en Basse Californie (Rangin, 1978) et en Guerrero (Campa et al., 1974). La marge active Pacifique migre donc vers le sud mais semble limitée par un nouvel accident transformant Rift-fosse responsable en partie du décalage des formations Paléozoïques Acatlán et Xolapa.

IV. Portlandien-Turonien

La séparation complète entre l’Amérique du Nord et l’Amérique du Sud se réalise durant le Crétacé inférieur. Simultanément s’ouvre un bassin océanique Nord-
Fig. 5. Etape Portlandien-Turonien.

A l'ouest, sur la marge continentale, s'édifie l'arc Alisitos-Teloloapan-Chontal.

A partir du Cénomanien le bloc de l'Amérique Centrale se rapproche du continent Nord-Américain. La sédimentation des bassins jusqu'alors volcanodétritique devient à dominante carbonatée pélagique.

Turonien Terminal - Phase Subhercynienne

A la fin du Turonien se réalise la suture entre le bloc de l'Amérique Centrale et l'Amérique du Nord. La collision entre ces deux blocs entraîne la fermeture des bassins, un premier écaillage de leur fond océanique le charriage vers le NE et le métamorphisme de leurs sédiments accompagné de la mise en place de plutons granodioritiques.
Fig. 6. Turonien Supérieur. Phase subhercynienne.
1. Front des déformations à vergence NE. 2. Déformations à vergence Pacifique. 3. Direction du mouvement de la plaque Pacifique.

V. Sénonien - Paléocène

A la suite de la phase subhercynienne une grande partie du Mexique et de l’Amérique Centrale est émergée. L’érosion des reliefs alimente, au Sénonien, une sédimentation détritique, discordante dans les régions internes, concordante dans les domaines externes.

Il n’y a pas d’évidence d’activité volcanique liée à une marge active Pacifique à cette époque.

Durant le Paléocène, une importante phase tectonique, la phase laramienne, plissative et cisailante mais non accompagnée de métamorphisme, affecte l’est du domaine cordilléran et l’ensemble des zones plus orientales à l’exception des domaines Olmèque, Chiapanèque et Quiché.
La tectonique est moins vigoureuse dans l’ouest du domaine cordillérain où elle ne se traduit, tant en Basse Californie qu’au Costa-Rica, que par de larges plis.

Le domaine externe et en particulier le Chiapas est affecté par des failles qui le découpent en horsts et grabens et vont contrôler la sédimentation Cénozoïque.

VI. Eocène - Miocène Inférieur

Après la phase laramienne la mer n’occupe plus que la périphérie du Golfe au pied du front de la Sierra Madre Orientale, les grabens du Chiapas et l’avant-pays Maya. A la périphérie du Golfe et dans les grabens du Chiapas s’accumulent des molasses marines, dans l’avant-pays Maya la sédimentation demeure carbonatée. Dans le reste du Mexique et en Amérique Centrale se déposent des molasses continentales parfois très épaisses, dans des bassins faillés, le plus souvent endoreïques.

Au sud-est du Mexique, à l’est d’Oaxaca et jusqu’à l’Isthme de Tehuantepec, un important ensemble volcanique acide à intermédiaire recouvre la molasse rouge post laramienne. Les datations radionucléiques (Fries et al., 1974; Williams et Mc Birney, 1969) et les données paléontologiques (Olivas, 1956; Wilson, 1967) montrent qu’il est d’âge Miocène moyen. Par sa situation orientale et son âge il n’est donc pas le prolongement méridional de la Sierra Madre Occidentale.

Une nouvelle réorganisation des conditions de convergence entre la plaque Farallón et la plaque Nord-Américaine au niveau du Mexique est intervenue à la fin du Miocène inférieur. Elle résulte de la collision entre la bordure Pacifique mexicaine et une partie nord du rift Farallón. Ce blocage a entraîné :

a) La formation des plis de fond orientés NNW-SSE reconnus dans la presque totalité des chaînes mexicaines (Rangin, 1977; Tardy, 1977; Carfantan, 1979).

b) La rupture de la partie méridionale de la plaque Nord-Américaine. Le bloc ainsi individualisé correspond à l’Amérique Centrale qui amorce sa dérive vers l’est.

c) Le développement d’un réseau de failles distensives qui va conditionner la séditionnement et le volcanisme Miocène, Pliocène et Quaternaire.

Parallèlement naît le rift des Galapagos qui va s’ouvrir d’ouest en est partageant le sud de la plaque Farallón en deux plages, la plaque de Cocos au nord, la plaque de Nazca au sud.

Miocène Moyen - Miocène Supérieur

Au fur et à mesure que l’Amérique Centrale se déplace relativement vers l’est, durant le Miocène moyen et le Miocène supérieur la zone de rupture évolue vers une zone de subduction. Les sondages et les études géophysiques réalisées au sud d’Acapulco lors du leg 66 du Deep Sea Drilling Project ont montré que la fosse d’Acapulco n’existe que depuis le Miocène moyen (Moore et al., 1979).

C’est donc l’établissement d’une nouvelle zone de subduction liée à la dérive de l’Amérique Centrale qui explique les orientations différentes des volcanismes Oligocène, NW-SSE et Miocène, NW-SE.

Une dernière réorganisation intervient à la fin du Miocène : A partir du rift des Galapagos s’ouvre dans la plaque de Cocos le néo-rift Est-Pacifique orienté Nord-
Fig. 9. Etape Miocène moyen - Miocène supérieur.
Phase Chiapanèque.

Sud (Lynn et Lewis, 1976). Cette réorganisation entraîne un arrêt momentané de la subduction et du volcanisme calco-alcalin et le plissement contemporain des domaines Olmèque-Chiapanèque et Quiché.

VII. Miocène Supérieur - Actuel

Durant le Pliocène le néorift Est Pacifique progresse vers le nord. L’ancien rift NNW-SSE (segments Clipperton puis Mathématicien) est intégré à la nouvelle plaque Pacifique où il ne joue plus qu’un rôle passif. L’extrémité nord du rift atteint l’entrée Golfe de Californie il y a environ 4,5 m.a. (Lynn et Lewis, 1976; Mammerickx, 1979). Celui-ci s’ouvre peu à peu en ciseau (Coletta et Ortlieb, 1980) pendant le Quaternaire, l’ouverture étant favorisée par l’existence d’un paléograben Miocène (Chorowicz et al., 1980).

La plaque de Cocos, dans sa forme actuelle, est donc héritée d’une paléo-plaque de Cocos Miocène elle-même héritée de la plaque Farallon. Elle peut être divisée en deux régions limitées par la ride de Tehuantepec : Au NW le fond océanique est récent, d’âge Miocène inférieur à la hauteur de la fosse du Guatemala (Aubouin et al.,
Fig. 10. Étape Miocène supérieur - Actuel.

1979). Ceci pour deux raisons : D’une part parce-que la fosse américaine NW-SE est oblique aux directions isochrones anciennes, NNW-SSE, héritées de la plaque Farallon et récentes, N-S; d’autre parce-que la ride de Tehuantepec correspond vraisemblablement à une ancienne faille transformante recoupée par le néo-rift (Lynn et Lewis, 1976).

Ainsi peut-on s'attendre à ce que l'angle de plongement de la région Nord-Occidentale de la plaque de Cocos soit inférieur à celui de la région Sud-Orientale où le
fond océanique est plus ancien donc moins chaud et plus dense. C’est ce qu’indique la distribution des seismes (Mota, 1979) : L’angle du plan de Benioff est de l’ordre de 20° en avant de la fosse d’Acapulco, de l’ordre de 40° en avant de la fosse Centro-Américaine. La composante horizontale du mouvement, importante au droit de la fosse d’Acapulco, induirait, selon Moore et al., 1979, un certain écaillement de la croûte océanique et des sédiments de la fosse. Par contre au niveau de la fosse Centro-Américaine la composante verticale l’emporte et il n’existe pas de prisme d’accrétion (Aubouin et al., 1979).

Cette différence des angles de plongement de la plaque de Cocos de part et d’autre de la ride de Tehuantepec explique également, en partie, la non-continuité spatiale du volcanisme plio-quaaternaire mexicain, l’axe néovolcanique, et Centro-Américain, la chaîne volcanique côtière. Pour l’interpréter totalement et expliquer l’obliquité entre la fosse d’Acapulco et l’axe néovolcanique il faut cependant ajouter le rôle des failles miocènes qui ont facilité la monté des magmas au niveau de l’axe (Demant, 1978) et l’existence, à l’extrémité ouest de la fosse, d’une croûte en formation dont la fusion doit être particulièrement facile.

BIBLIOGRAPHIE

(Received: 28 de enero, 1982)

(Accepted: 3 de mayo, 1982)