SLAM con mediciones angulares: método por triangulación estocástica

Rodrigo Francisco Munguía-Alcalá, Antoni Grau-Saldes

Resumen


El SLAM (simultaneous localization and mapping) es una técnica en la cual un robot o vehículo autónomo opera en un entorno a priori desconocido, utilizando únicamente sus sensores de abordo, mientras construye un mapa de su entorno, el cual utiliza al mismo tiempo para localizarse. Los sensores tienen un gran impacto en los algoritmos usados en SLAM. Enfoques recientes se están centrando en el uso de cámaras como sensor principal, ya que generan mucha información y están bien adaptadas para su aplicación en sistemas embebidos: son ligeras, baratas y ahorran energía. Sin embargo, a diferencia de los sensores de rango, los cuales proveen información angular y de rango, una cámara es un sensor proyectivo que mide el ángulo(bearing) respecto a los elementos de la imagen, por lo que la profundidad o rango no puede ser obtenida mediante una sola medición. Lo anterior ha motivado la aparición de una nueva familia de métodos en SLAM: los métodos de SLAM basados en sensores angulares, los cuales están principalmente basados en técnicas especiales para la inicialización de características en el sistema, permitiendo el uso de sensores angulares (como cámaras) en SLAM. Este artículo presenta un método práctico para la inicialización de nuevas características en sistemas de SLAM basados en sensores angulares. El método propuesto implementa mediante un retardo una técnica de triangulación estocástica para definir una hipótesis para la profundidad inicial de las características. Para mostrar el desempeño del método propuesto se presentan resultados experimentales con simulaciones y también se presentan dos casos de aplicación para escenarios con datos reales procedentes de distintos sensores angulares.

Palabras clave


SLAM; vehículos autónomos; sensores angulares; localización; mapeo; navegación de robots

Texto completo:

PDF