Sistema sensor para el monitoreo ambiental basado en redes

José de Jesús Rubio, Juan Manuel Stein-Carrillo, Adolfo Meléndez-Ramírez

Resumen


En las tareas de monitoreo ambiental resulta de gran importancia contar con sistemas compactos y portátiles capaces de identificar contaminantes ambientales que faciliten las tareas relacionadas con el manejo de los residuos y la restauración ambiental. En este trabajo se describe el desarrollo de un sistema sensor prototipo creado para identificar contaminantes en el ambiente. Este prototipo está conformado con un arreglo de sensores de gas de óxido de estaño SnO2 utilizados para identificar vapores químicos, una etapa de adquisición de datos implementada con una plataforma ARM (Advanced RISC Machine) de bajo costo (Arduino) y una red neuronal capaz de identificar contaminantes ambientales automáticamente. La red neuronal se utiliza para identificar la composición del contaminante censado. En el sistema de cómputo, la carga computacional intensa se presenta únicamente en el proceso de entrenamiento, una vez que la red neuronal es entrenada, la operación consiste en propagar los datos a través de la red con una carga computacional mucho más ligera, la cual consiste principalmente en una multiplicación vector-matriz y una búsqueda en tablas que lleva a cabo la función de activación para identificar rápidamente muestras desconocidas.

Palabras clave


redes neuronales; inteligencia artificial; contaminación ambiental; sensores; reconocimiento de patrones

Texto completo:

PDF