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RESUMEN

Presentamos un modelo anaĺıtico de capa delgada para un flujo eyectado con
un ángulo de apertura que crece en función del tiempo. Este modelo predice una
cavidad que se ensancha con el tiempo, y que se estrangula sobre el eje del flujo en un
punto que se aleja de la fuente. La motivación de este modelo son las observaciones
de una cavidad bipolar centrada en Barnard 5 IRS 1 de Velusamy & Langer (1998),
quienes sugieren una interpretación de la estructura observada con un modelo como
el que hemos desarrollado. Encontramos que la estructura observada śı puede ser
producida por un flujo con colimación decreciente en función del tiempo, para una
pérdida de masa del flujo de Ṁ0 ≈ 3 × 10−6M� yr−1.

ABSTRACT

We present a thin shell, analytic model for an outflow ejected with an opening
angle that increases as a function of time. This model predicts a cavity shape
that broadens out with time, and pinches towards the outflow axis at a point that
travels away from the outflow source. The motivation for this model is the set of
observations of a bipolar cavity centered on Barnard 5 IRS 1 by Velusamy & Langer
(1998), who suggest an interpretation for the observed structure in terms of a model
such as the one that we have studied. We find that this observed structure could
indeed be produced by an outflow of decreasing collimation as a function of time,
provided that the mass loss rate has a value Ṁ0 ≈ 3 × 10−6M� yr−1.

Key Words: ISM: jets and outflows — ISM: kinematics and dynamics — stars: mass
loss — stars: pre-main sequence

1. INTRODUCTION

There is considerable observational evidence for
the interaction of a jet from a young stellar object
(YSO) with the dense core within which the YSO
formed. Early indications of such an interaction
were the detection of HCO+ emission from unre-
solved dense cores which implied an HCO+ abun-
dance an order of magnitude larger than could be
sustained in the physical conditions of the core it-
self (e.g. Gregersen et al. 1997; Ward-Thompson &
Buckley 2001; Rawlings & Yates 2001). Rawlings,
Taylor, & Williams (2000) suggested that a signifi-
cantly enhanced abundance of HCO+ might arise in
the interface at the boundary of the cavity created
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by the emerging jet in the dense core through an
interaction between ionised wind gas and molecular
gas; the reaction of C+ with H2O released from the
dust grains of the core creates HCO+ directly. Viti,
Natarajan, & Williams (2002) showed that a variety
of other molecules, other than HCO+, should also be
enhanced in the interface.

The morphology of the interaction may in some
cases be directly observable. Hogerheijde et al.
(1998) observed HCO+ emission in several dense
star-forming cores of which one, L1527, shows a
“butterfly” morphology with an opening angle of
about 90 degrees. These authors interpreted this
structure as arising from enhanced abundance of
HCO+ in the wall of the cavity created by the
jet/core interaction. Rawlings et al. (2004) used
a radiative transfer code to show that such a model
would indeed present the morphology observed by
Hogerheijde et al. (1998). More convincing obser-
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294 CANTÓ, RAGA, & WILLIAMS

vations of the morphology of a jet/core cavity were
made by Velusamy & Langer (1998) in their study
of Barnard 5 IRS1, an embedded YSO with bipolar
molecular outflows. They inferred that the interac-
tion created a near-parabolic cavity, and that this
implied that the opening angle at the base of the jet
was increasing and would be fully open in about 104

yr. Thus, cavity morphology may be a guide to the
evolutionary age of the jet.

In the present paper, we apply the thin-shell for-
malism of Cantó, Raga, & Adame (2006) to the
problem of an outflow with an initial opening an-
gle that increases with time, travelling into a strati-
fied environment. Four different analytical solutions
(for winds with a constant mass loss rate per unit
solid angle and with a constant total mass loss rate,
moving into a uniform environment or into an en-
vironment with a R−2 radial density law) are de-
scribed in §§ 2–4. In § 5, we apply one of these
solutions (the one for a constant mass loss rate out-
flow moving into a stratified environment) for mod-
elling the Barnard 5 IRS1 outflow and cavity. This
study demonstrates the ready applicability of the
theory, showing that the precise morphology and
specific evolutionary timescale arise naturally from
the jet/core interaction, for plausible choices of the
physical parameters of the region. The implications
of these results are briefly discussed in § 6.

2. THE MODEL

We consider a jet which is ejected from a source
along the z-axis of a cylindrical coordinate system
centered on the source. The jet decollimates as a
function of time at a constant rate ε, so that the half-
opening angle of the ejection at time τ is θj = ετ .
We assume that the ejection velocity v0 is isotropic
(i. e., is independent of the ejection angle) within the
jet beam, and constant in time as the opening angle
at the base of the jet widens.

For the mass loss rate we consider two cases:

1. a mass loss rate per unit solid angle ṁ0 which
remains constant in time, and

2. a time-independent total mass loss rate Ṁ0.

In the first case, the total mass loss rate in the
jet increases with time, while in the second case the
mass loss rate per unit solid angle decreases for in-
creasing times.

For a given ejection time τ and angle θ (measured
out from the z-axis), the jet velocity and mass loss
rate per unit solid angle can be expressed as

vj = v0 s(θ, τ), and ṁj = ṁ0(τ) s(θ, τ) , (1)

where s(θ, τ) is the step function

s(θ, τ) = 1 for 0 ≤ θ ≤ ετ ;

s(θ, τ) = 0 for ετ < θ ≤ π/2 . (2)

The interaction of the jet with the surrounding
medium forms an expanding shell moving radially
away from the star. Following Cantó et al. (2006),
the position RS(θ, t) of the shell at time t in the
direction θ is given by the solution of the equations:

RS(θ, t) = (t − τ)vj(θ, τ) , (3)

(I1 + I5) RS − I2t + I3 − I6 = 0 , (4)

where τ(θ) is the ejection time of the jet material
which at time t is entering the shell in the θ-direction,
and

I1(θ, τ) ≡
∫ τ

0

ṁj(θ, τ
′) dτ ′ , (5)

I2(θ, τ) ≡
∫ τ

0

ṁj(θ, τ
′) vj(θ, τ

′) dτ ′ , (6)

I3(θ, τ) ≡
∫ τ

0

ṁj(θ, τ
′) vj(θ, τ

′) τ ′ dτ ′ , (7)

I5(θ,RS) ≡
∫ RS

0

ρa(θ,R)R2 dR , (8)

I6(θ,RS) ≡
∫ RS

0

ρa(θ,R)R3 dR . (9)

In equations (8) and (9), ρa(θ,R) represents the den-
sity distribution of the surrounding medium, which
may be a function of the distance R from the star as
well as of the direction θ.

Substituting equations (1) and (2) into (3), we
then obtain:

RS(θ, t) = (t − τ)v0 ; θ ≤ ετ , (10)

RS(θ, t) = 0 ; θ > ετ . (11)

In order to proceed further, it is necessary to
specify the angular and time dependence of the
ejected wind, as well as the spatial dependence of
the ambient density. Different possible choices are
explored in the two following sections.

3. JET WITH CONSTANT MASS LOSS RATE
PER UNIT SOLID ANGLE

Let us consider the case of a mass loss rate per
unit solid angle ṁ0 which is constant in time and
uniform within the jet beam. Using equations (1),
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(2), and (5–7) we obtain

I1 =

(

τ − θ

ε

)

ṁ0 , (12)

I2 =

(

τ − θ

ε

)

ṁ0v0 , (13)

I3 =
1

2

(

τ2 − θ2

ε2

)

ṁ0v0 , (14)

for θ ≤ ετ and zero otherwise.
Substituting (10–14) into (4), we obtain

t =
θ

ε
+

RS

v0

+

√

2

ṁ0v0

(RSI5 − I6) , (15)

which relates the shell radius RS , the angle θ and
the time t. Note that equation (15) is only valid for
angles θ ≤ ετ = θm, and that RS = 0 for θ > θm.

We should note that if one takes the ε → ∞
limit (i. e., the jet instantaneously increases its open-
ing angle to become isotropic), equation (15) coin-
cides with the isotropic wind solution of Cantó et al.
(2006). It also follows from equation (15) that the
solution for the interaction of a jet with increasing
opening angle (as a function of time) and constant
velocity and mass loss rate per unit solid angle is the
solution for the shell pushed out by a steady wind,
but with a time delay θ/ε for a given direction θ.
This delay represents the time for the lateral bound-
ary of the jet cone to reach the angle θ and start
blowing out the shell in this direction.

Let us now consider two possibilities for the en-
vironmental distribution: a uniform density ρa = ρ0

and an outwardly decreasing density of the form
ρa = κ/R2 (with κ independent of distance R from
the source but with a possible dependence on θ).

i. Uniform environment (ρa = ρ0)

From equations (8) and (9) we obtain

I5 =
1

3
ρ0RS

3 , (16)

I6 =
1

4
ρ0RS

4 . (17)

Substituting (16) and (17) into equation (15) we then
obtain

RS =
R0√

2

[
√

3 + 2
√

6

(

t − θ

ε

)

v0

R0

−
√

3

]

, (18)

where

R0 ≡
√

ṁ0

ρ0v0

. (19)

Fig. 1. Cavity shapes obtained from the constant mass
loss rate per unit solid angle, uniform environment
model. The left frame shows the cavities obtained for
a model with v0/(R0ε) = 1.0, and the right hand frame
for a model with v0/(R0ε) = 5.0. For both models we
show the cavities for times εt = π/4 (dashed curves) and
εt = π/2 (solid curves).

The cavity shapes that are produced by equa-
tion (18) open out from the position of the source,
and eventually curve back towards the symmetry
axis, ending in a pointed apex, as can be seen from
the two examples shown in Figure 1.

ii. Power law environment (ρa = κ/R2)

From equations (8) and (9) we obtain

I5 = κRS , (20)

I6 =
1

2
κRS

2 . (21)

Substituting (20) and (21) into equation (15) we then
obtain

RS =
v0

1 +
√

A

(

t − θ

ε

)

, (22)

where
A ≡ κv0

ṁ0

, (23)

which is constant along the radial direction, but
could have a dependence on θ (because κ can have a
θ-dependence).

As expected, the radius in this case increases with
time at a constant velocity

vS =
v0

1 +
√

A
, (24)
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possibly dependent on direction (through the depen-
dence of κ and A on θ, see above).

Figure 2 shows the solution obtained from equa-
tion (22) for a time such that the opening angle of
the conical outflow is θm = 60◦.

4. JET WITH CONSTANT TOTAL MASS LOSS
RATE

In this case, the mass loss rate per unit solid angle
decreases with time as

ṁ0 =
Ṁ0

Ω(τ)
, (25)

where Ṁ0 is the total mass loss rate and

Ω(τ) = 2π [1 − cos(ετ)] , (26)

is the solid angle (subtended by the opening angle
θ) of the jet at ejection time τ . Combining equa-
tions (25) and (26) with (5–7) one obtains:

I1 =
Ṁ0

2πε

[

cotan

(

θ

2

)

− cotan
(ετ

2

)

]

, (27)

I2 =
Ṁ0v0

2πε

[

cotan

(

θ

2

)

− cotan
(ετ

2

)

]

, (28)

I3 =
Ṁ0v0

2πε2

{

θ cotan

(

θ

2

)

− ετ cotan
(ετ

2

)

+ 2 ln

[

sin(ετ/2)

sin(θ/2)

]

}

. (29)

i. Uniform environment (ρa = ρ0)

The integrals I5 and I6 are given by equa-
tions (16) and (17). Substituting the results of these
integrals, together with (10) and (27–29) into equa-
tion (4) one obtains:

ε2πρ0RS
4 + 6Ṁ0 [θv0 + ε(RS − tv0)] cotan

(

θ

2

)

+12Ṁ0v0 ln

{

sin [ε(t − RS/v0)/2]

sin(θ/2)

}

= 0 , (30)

which gives, in an implicit way, the radius of the shell
as a function of θ (in the interval 0 ≤ θ ≤ εt) for a
given time t.

We note that equation (30) gives (correctly) that
RS = 0 for θ = εt, which is the opening angle of the
jet at time t. It also follows from equation (30) that
RS = v0t for θ = 0 at any time. This is a result of the
fact that initially (i. e., at t = 0) the jet has a zero

Fig. 2. Cavity shape obtained from the constant mass
loss rate per unit solid angle, ρa = κ/R2 environment
model. The displayed shape corresponds to a maximum
opening angle θm = 60◦, and the (z, r) coordinates have
been normalized to the axial extent of the cavity.

opening angle, and its density is infinite. Under this
condition the medium presents no resistance to the
jet motion, and therefore the perturbation driven by
the initial ejection travels ballistically at the ejection
velocity v0.

Finally, we can write equation (30) in dimension-
less form. To do this, we first define:

θm ≡ εt , (31)

RS ≡ RS/R0 , (32)

ρ0 ≡ πρ0v0R0
2

Ṁ0

, (33)

ε ≡ εR0

v0

, (34)

where R0 is a characteristic length. Equation (30)
can then be written as

ε2ρ0RS
4

+ 6
(

εRS + θ − θm

)

cotan

(

θ

2

)

+12 ln

{

sin
[

(θm − εRS)/2
]

sin(θ/2)

}

= 0 . (35)

With the definitions above, we have

RS(θ = 0) =
θm

ε
. (36)
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ii. Power law environment (ρa = κ/R2)

In this case, the integrals (8) and (9) are given
by equations (20) and (21). Using the results from
these integrals, together with equations (4) and (27–
29), we obtain:

ε2κπRS
2 + Ṁ0 [θv0 + ε (RS − tv0)] cotan

(

θ

2

)

+2Ṁ0v0 ln

{

sin [ε(t − RS/v0)/2]

sin(θ/2)

}

= 0 . (37)

As in the uniform density case, equation (37) gives
RS = 0 for θ = εt, and RS = v0t for θ = 0 for any
time t.

Finally, we can write equation (37) in dimension-
less form. To do this, we first define:

κ ≡ 4πκv0

Ṁ0

. (38)

Also using the definitions in equations (31–34), equa-
tion (37) can then be written as

ε2κRS
2

+ 4
(

εRS + θ − θm

)

cotan

(

θ

2

)

+8 ln

{

sin
[

(θm − εRS)/2
]

sin(θ/2)

}

= 0 . (39)

The solutions given by equations (35) and (39)
both correspond to cavities that first open out from
the position of the source, and then converge onto
the symmetry axis forming a pointed, axially pinched
structure. We show these shapes in more detail in
the following section (also see Figures 3 and 4), in
which we attempt to compare these two solutions
with the observed shape of IRS 1 in Barnard 5.

5. AN APPLICATION TO IRS 1 IN BARNARD 5

Barnard 5 is a dark molecular cloud NE of NGC
1333 at a distance D = 350 pc. It has a size of
∼ 6 × 3 pc and a total mass of ∼ 1000 M�. The
IRAS survey resulted in the detection of four point
sources, the most luminous of them (IRS 1) having
an infrared luminosity of ∼ 10 L� (Beichman et al.
1984).

Goldsmith, Langer, & Wilson (1986) detected a
bipolar, high-velocity (∆v ∼ 30 km s−1) molecular
outflow associated with IRS 1. Fuller et al. (1991)
confirmed the presence of this outflow and presented
a high resolution map of the region, showing that
it has an extent of at least 0.3 pc and is oriented
along a PA ∼ 60◦. However, Bally, Devine, & Al-
ten (1996) reanalyzed the Goldsmith et al. (1986)

Fig. 3. Cavity obtained from the fit of our constant mass
loss rate, constant ρa model to the observations of the
NE cavity of Barnard 5 IRS 1. The left frame shows the
base of the cavity (with distance measured in arcseconds
from the position of the outflow source) predicted from
the model (solid line), superimposed on the observed po-
sitions (see Table 1) of the maxima along the NE cavity
(crosses). The right frame shows the shape of the pre-
dicted cavity, extending out to the position in which HH
objects are observed.

Fig. 4. Cavity obtained from the fit of our constant mass
loss rate, ρa = κ/R2 model to the observations of the NE
cavity of Barnard 5 IRS 1. The left frame shows the base
of the cavity and the right frame shows the full shape of
the predicted cavity (see also Figure 3).

data and concluded that the high-velocity molecu-
lar gas extends from IRS 1 to the E and W ends of
a newly detected parsec-scale Herbig-Haro jet also
emerging from this source. The brightest part of the
blueshifted jet is at a position angle of ∼ 75◦, has
a velocity of ∼ 100 km s−1 and is located at about
660′′ (∼ 1.1 pc) from IRS 1.
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Langer, Velusamy, & Xie (1996) and Velusamy
& Langer (1998) present interferometric, high-
resolution images of the inner part (±20′′ from the
source) of the molecular outflow. They show that the
outflow consists of two cone-like features originating
in IRS 1, the blue one fanning open to the NE and
the red one to the SW. The cone axis is oriented at a
73◦ position angle, which is close to the direction of
the optical jet. Also, the outflow lobes are parabolic
near the vertices, and show a strong, limb-brightened
emission, interpreted as a biconical cavity with walls
that appear to be pushing and compressing the am-
bient gas. Velusamy & Langer (1998) suggest that
all of these features can be interpreted in terms of
an increase in the opening angle of the outflow cone
as a function of time.

In order to apply our models to the outflow de-
scribed above, we start by measuring the position
angle and the distances from the star to the most
prominent local maxima along the N and S arms
of the intensity map of the blueshifted lobe (shown
in Figure 3 of Velusamy & Langer 1998). We find
that the angle θ between the symmetry axis and the
line connecting these maxima with the star and their
distance RS (from the star) have a strong linear cor-
relation. We then fit the data with a relation

RS ≈ a + bθ , (40)

where θ = |PA−PAS | (PA being the position angle
of the intensity maxima and PAS being the posi-
tion angle of the symmetry axis) and a and b are
constants. We then carry out a simple minimiza-
tion procedure, from which we obtain PAS = 73.◦03
which is actually very close to the value estimated
by Langer et al. (1996). We should note that essen-
tially the same result for PAS is obtained by fitting
a quadratic polynomial in θ to the data.

With this PAS = 73.◦03 value we then rotate the
observations in such a way that the symmetry axis
lies along the z-axis of a Cartesian reference frame,
with its y-axis pointing towards the observer and x-
axis on the plane of the sky. The (x, z) coordinates
(in seconds of arc) of the maxima delineating the
cavity walls are given in Table 1, and are plotted in
Figure 1. In Table 1, we also give the angle θ and
distance to the source RS of the maxima.

We now model this cavity with our solutions for a
constant Ṁ0 outflow moving into a constant density
medium or into a ρa = κ/R2 stratified environment
(see §§ 4. i and 4. ii). These two solutions appear to
be appropriate because they produce axially pinched
structures which are consistent with the fact that
one observes HH objects concentrated to the outflow

TABLE 1

SHAPE OF THE CAVITY

Maxima RS(′′) θ(◦) x(′′) z(′′)

N1 31.27 36.03 18.39 25.39

N2 28.31 41.03 18.58 21.36

N3 24.08 42.03 16.12 17.89

N4 20.70 45.03 14.65 14.63

N5 17.96 48.03 13.35 12.01

N6 15.63 50.03 11.98 10.04

N7 10.56 54.03 8.55 6.20

N8 6.34 57.03 5.32 3.45

N9 8.24 57.02 6.91 4.48

N10 4.01 60.03 3.48 2.01

S1 17.75 47.97 −13.18 11.88

S2 15.00 50.97 −11.65 9.45

S3 13.52 52.97 −10.79 8.14

S4 7.61 56.97 −6.38 4.15

S5 5.07 56.97 −4.25 2.76

axis at ≈ 660′′ from the source (see above and Bally
et al. 1996). The two constant mass loss rate per
unit solid angle solutions produce flat topped cavity
shapes which are qualitatively inconsistent with this
observation (see §§ 3. i and 3. ii).

We first assume that the observed outflow axis
lies on the plane of the sky. We consider R0 = 1′′

(i.e., distances measured in arcseconds) and RS(θ =
0) = 660 (see above and equation 36).

We then carry out fits of the predicted shapes
(equations 35 and 39) to the data (see Table 1). For
the model of a constant mass loss rate flow moving
into a constant density environment (see § 4.i and
equation 35), we obtain ρ0 = 0.65 ε = 1.60 × 10−3

and θm = 60.◦2. This fit is shown together with the
measured cavity shape in Figure 3. In this figure, we
also show the predicted shape of the outflow cavity,
which extends away from the source and pinches at
the position of the observed HH objects.

From the fit with the constant mass loss rate,
power law environment model (see § 4.i and equa-
tion 39), we obtain κ = 460, ε = 1.74 × 10−3 and
θm = 66.◦0. This fit is shown together with the mea-
sured cavity shape in Figure 4.

If we now assume that the outflow has a veloc-
ity v0 = 100 km s−1, we then determine an evolu-
tionary time t = 1.1 × 104 yr and an opening rate
ε ≈ 6 × 10−3 deg yr−1 for the outflow. This value
of ε coincides with the opening rate estimated by
Velusamy & Langer (1998).
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Let us now concentrate on the model with the
ρa=κ/R2 environmental density distribution, which
appears to be more realistic for modelling an object
which is formed in the middle of a molecular cloud
core. Fuller et al. (1991) found three dense clumps
around IRS1, with a total mass of 0.55 M� within a
radius of ∼ 1.3×1017 cm. If these knots represent the
inner part of the κ/R2 density distribution around
the outflow source, the observationally determined
mass implies that κ ≈ 6.7 × 1014 g cm−1. Then,
using this value of κ and the definition of κ (see
equation 38), the κ = 460 value determined from
the fit to the observed cavity shape (see above and
Figure 1) and the assumed v0 = 100 km s−1 outflow
velocity we derive an outflow mass loss rate of Ṁ0 ≈
3 × 10−6 M� yr−1. This mass loss rate compares
well with estimates of Ṁ0 for other young stars with
collimated outflows.

6. CONCLUSIONS

We have derived an analytic, thin shell model
for an outflow ejected with an opening angle that
increases with time, travelling into a homogeneous
or a stratified (ρa ∝ R−2) environment. We have
derived full solutions for outflows with a constant
mass loss rate per unit solid angle ṁ0 (§ 3) and with
a constant total mass loss rate Ṁ0 (§ 4).

This study has been motivated by the interfer-
ometric observations of Velusamy & Langer (1998)
of a bipolar cavity structure centered on Barnard 5
IRS 1. Bally et al. (1996) also discovered a giant
HH outflow ejected by the same source. Velusamy
& Langer (1998) interpreted the observed cavity as
evidence of an outflow ejected with an opening angle
that increases with time.

We find that while constant ṁ0 models produce
cavities with a broad head (§ 3), constant Ṁ0 mod-
els (§ 4) produce cavity structures which end in a
pinched, collimated structure extending away from
the source along the symmetry axis. The constant
Ṁ0 models are therefore more interesting for mod-
elling objects such as IRS 5 in Barnard 5, which has
an extended cavity structure close to the source and
a more collimated, jet-like structure at larger dis-
tances.

We have applied our dynamical models of a con-
stant Ṁ0 outflow moving into a constant density en-
vironment and into a ρa ∝ R−2 density distribution
to the observations of this outflow. We find that for
both models one can choose parameters such that
both the shape of the observed cavity and the dis-
tance to the end of the giant HH flow (which in our
model would correspond to the top of the pinched

cavity) are reproduced by the model. This agree-
ment between the observations and the morphology
predicted by the model is obtained for an outflow
with an evolutionary timescale of ≈ 1.1×104 yr and
an opening rate ε = 6 × 10−3deg yr−1 (assuming a
v0 = 100 km s−1 outflow velocity, see § 5). Fur-
thermore, considering the ρa ∝ R−2 model, we can
normalize the environmental density stratification to
the mass around IRS 1 determined by Fuller et al.
(1991), and then obtain Ṁ0 ≈ 3×10−6 M� yr−1 for
the mass loss rate of the outflow.

Therefore, we conclude that the model proposed
by Velusamy & Langer (1998) for explaining the
Barnard 5 IRS 1 cavity (in terms of the action of an
outflow with an opening angle that increases with
time) survives a more detailed, dynamical analysis.
Our model shows that an outflow with a reason-
able ejection velocity and mass loss rate (and with
the ε = 6 × 10−3 deg yr−1 opening rate deduced by
Velusamy & Langer 1998) would indeed produce the
observed cavities.

In this paper, we have presented four different,
fully analytic models for shells driven by a jet with
an increasing opening angle as a function of time.
In order to illustrate the possible use of our models,
we have carried out a comparison with the Barnard 5
IRS 1 cavity. The models of course are also useful for
attempting to model other cavity structures centered
on YSO’s. Several examples of this kind of structure
have been observed by Arce & Sargent (2006), who
also present an interpretation of the observed struc-
tures as the result of outflows with opening angles
that grow with time. A future comparison between
our models and the morphologies and kinematics of
the cavities observed by Arce & Sargent (2006) might
provide useful insights regarding the time-evolution
of outflows from YSO’s.
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México). We thank an anonymous referee for help-
ful comments.

REFERENCES

Arce, H. G., & Sargent, A. I. 2006, ApJ, 646, 1070
Bally, J., Devine, D., & Alten, V. 1996, ApJ, 473, 921
Beichman, C. A., et al. 1984, ApJ, 278, L45
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