Surgical-orthodontic treatment of a class III patient with asymmetry due to mandibular deviation. Case report

Tratamiento ortodóntico-quirúrgico. Paciente clase III con asimetría por desviación mandibular. Reporte de un caso

Norma Oviedo Mojica,* Isaac Guzmán Valdivia Gómez§

* Graduated.
§ Professor.

University of Latin America Campus Valle.

© 2018 Universidad Nacional Autónoma de México, [Facultad de Odontología]. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

This article can be read in its full version in the following page: http://www.medigraphic.com/ortodoncia
American population (Mills, 1966), but is much more frequent in Asian race.²

Within this anomaly we may find prognathism, which is defined as the excessive anterior projection or growth of the mandible, maxillary hypoplasia, a combination of prognathism and maxillary retrusion and finally, mandibular laterognathia which will cause a facial asymmetry.⁵,⁶

Proffit et al, reported that among patients with skeletal class III, 20% of them present mandibular excess; 17%, maxillary hypoplasia and 10% present a combination of mandibular excess and maxillary retrusion.³

Treatment of class III malocclusion can be started in early stages with the help of myofunctional appliances, or with surgical-orthodontic therapies in adult patients, who have completed their growth.

An interdisciplinary approach in the treatment of these malocclusions is indispensable for achieving satisfactory and stable results. The orthodontist and the surgeon must interact with each other in order to achieve a good diagnosis and treatment planning.³,⁵,⁷,⁸

BACKGROUND

Treatment for a class III malocclusion in permanent dentition is limited, especially when there is a strong skeletal component. Among the treatments we may find: orthodontic therapy combined with extractions to compensate the malocclusion or a surgical-orthodontic treatment for the correction of discrepancies of the skeletal components.²,³,⁴,⁸

Orthognathic surgery was developed in the mid-20th century, mainly by the German school and by the
Oviedo MN et al. Surgical-orthodontic treatment of a class III patient with asymmetry due to mandibular deviation

Since Hugo Obwegeser described the sagittal osteotomy of the mandibular ramus in 1955 there have been many changes for this surgical procedure. In 1961 Gregorio Dal Pont suggested to perform the osteotomy more anteriorly to direct the mandibular body up to the height of the first and second molar, where it will descend vertically to the basilar edge. This modification increases the contact surface and in theory it would improve healing.10-12

In 1977 Bruce Epker publishes the most significant modification to the osteotomy, in this technique it is no longer necessary to reach the posterior border of the mandibular ramus, but only from above and behind the Spix spine, while the lower edge of the body is addressed as perpendicular as possible to guide the fracture through the inferior dental canal, making surgery less traumatic and more versatile.8,11,12

As we have seen, the evolution of the osteotomy of the mandibular ramus has occurred in design, extension and the instruments used. With these modifications, this technique has become a versatile, predictable and biologically acceptable.11-13

Once it is decided to treat a patient surgical-orthodontically a protocol should be established. It is divided into three stages:

1. Pre-surgical orthodontics phase.
2. Surgical phase.

With the diagnosis, the orthodontist begins the preoperative stage where a dental, skeletal, muscular and articular de-compensation is performed in order to position the mandible surgically in an ideal position.3,5,7,14-16

CASE REPORT

A female patient of 21 years of age attended the Orthodontics Clinic of the Latin American University Valle Campus, with the following reason for

<table>
<thead>
<tr>
<th>Table I. Cephalometric comparison.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
</tr>
<tr>
<td>Facial convexity</td>
</tr>
<tr>
<td>L1 inclination</td>
</tr>
<tr>
<td>U1 inclination</td>
</tr>
<tr>
<td>Facial depth</td>
</tr>
<tr>
<td>Maxillary depth</td>
</tr>
<tr>
<td>SNA</td>
</tr>
<tr>
<td>SNB</td>
</tr>
<tr>
<td>ANB</td>
</tr>
</tbody>
</table>
consultation: «I want to fix my teeth». The clinical chart did not reveal any pathological data of importance.

The facial analysis revealed a mesofacial biotype, an increased lower third; facial asymmetry with mandibular deviation to the left side, slightly concave profile and upper retrocheilia (Figure 1).

Intraorally, the patient presented an anterior crossbite, non-coincident dental midlines, clinical absence of the tooth #13 (retained) left canine class III, non-assessable canine class on the right side; bilateral molar class III, mild crowding in the upper arch, paraboloid arch form, bilateral spacing between canine and lower first premolar; a 2 mm overjet and an overbite of 1 mm (Figure 2).

Cephalometrically, the diagnosis was a skeletal class III due to maxillary hypoplasia and prognathism, lower incisor proclination, upper incisor retroclination, vertical growth and laterognathia.

On the basis of the performed analysis (facial, dental, cephalometric and functional) it was decided to perform a surgical-orthodontic treatment using Roth .022 system with bands and tubes in upper and lower second molars. It was determined that it was not necessary to perform extractions.

The treatment objectives were: to achieve skeletal class I, improve the axial inclination of the teeth, achieve molar and canine class I, correct the dental midlines, provide facial harmony, improve the profile and lip position and maintain joint health.

Orthodontic pre-surgical phase

An initial TPQ and VTO were performed. Subsequently fixed appliances were placed; beginning the phase of leveling and alignment with 0.014" and 0.016" NiTi archwires. Treatment continued with light second and third order movements with 0.016 × 0.016", 0.016 × 0.022" NiTi and 0.016 × 0.22 SS; 0.017 × 0.025 archwires. Retraction of the lower anterior segment was performed with DKL 0.019 × 0.025 SS archwire. Pre-surgical consolidation was performed with 0.019" × 0.025 SS archwires. Finally surgical 0.019 × 0.025 SS archwires with hooks were placed (Figure 3) and a pre-surgical occlusal balance, as well as TPQ and surgery of models were performed.

Surgical phase

The surgeon performed an asymmetric mandibular retroposition with sagittal osteotomy of the ramus. At the end of the surgery, a splint was placed to maintain the correct position of the mandible with respect to the maxilla and fixation was performed with osteosynthesis plates (Figure 4).9,12-14

Post-surgical orthodontic phase

The intermaxillary splint was maintained for four weeks. After this period both the surgical splint and the surgical archwires were removed. There was no need for a second leveling; 0.019" × 0.025 SS” consolidation and stabilization archwires were placed as well as delta elastics for occlusal settlement. The appliances were removed after three months and an upper circumferential was placed as well as a lower fixed retainer bonded from first premolar to first premolar.

Figure 5. A. Initial intraoral photographs. B. Final intraoral photographs.
RESULTS

The objectives set at the beginning of treatment were achieved. Skeletal class I reduction in the mandibular body length and correction of mandibular deviation were obtained (Table I). A class I molar and canine relationship was achieved as well as coincident dental midlines and a normal overjet and overbite (Figures 5 and 6). Facialy, we obtained facial harmony, a straight profile and a correct position of the upper lip (Figures 7 and 8).

DISCUSSION

The most difficult malocclusion to diagnose and treat is Class III as it almost always shows skeletal-dental combinations, as well as the interaction of genetic and environmental factors, which will be responsible for the severity of the malformation.

Authors such as Proffit, Gregoret and Kimura agree that there are three main treatment options for a skeletal class III malocclusion: 1) growth modification (orthopaedics), 2) orthodontics, and 3) the combination of orthodontic treatment with orthognathic surgery.3,6,7 But when the malocclusion is present in an adult patient where growth has completed the viable option is by means of a surgical-orthodontic treatment since in most cases, there are major dental and skeletal disharmonies.

Quevedo et al. reported that the technique with greater change throughout history has been the sagittal osteotomy of the mandibular ramus since it is
the most widely used technique for the correction of mandibular deformities. This procedure has provided the surgeons more control in sagittal verticaland horizontal bone cuts, providing better post-surgical results.10-13

CONCLUSIONS

To know how to diagnose the presence of a skeletal anomaly is the basis for a good treatment.

Satisfactory results in surgical-orthodontic treatments not only depend on a good diagnosis and treatment plan, but also of the knowledge and experience of the professionals involved.

Communication between the orthodontist and the maxillofacial surgeon is indispensable for successfully achieving treatment objectives.

REFERENCES

Mailing address:
Norma Oviedo Mojica
E-mail: normaoviedomojica88@hotmail.de