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A Note on the Bear-Hunter Problem in Mathematics
Una nota sobre el problema del oso y el cazador en Matemáticas
To Adolfo Sánchez Valenzuela in his 60 birthday.
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Resumen
Revisamos un problema clásico en matemáticas sobre el oso y el cazador. Proponemos una aproximación diferente a los 
conjuntos numerables de soluciones conocidas para este problema y se presenta una nueva prueba de que éstas son todas 
las posibles soluciones. Finalmente, discutimos algunas consecuencias de la prueba, incluyendo las consecuencias del 
hecho de que no todas las trayectorias en el problema son geodésicas de la esfera.

Palabras clave:  el cazador y el oso, geodésicas de la esfera.

Abstract
We revisit the classical problem in mathematics about the bear and the hunter; we take a different approach to the countable 
sets of known solutions giving a new proof that in fact these are all the solutions. We also discuss some consequences of 
the proof, in particular, of the fact that not all the paths involved in this problem are geodesics of the sphere.

Keywords: Bear-Hunter Problem, geodesics of the sphere.
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The Problem	

A classic problem in mathematics goes like this: a hunter 
sets up a camp from which to go bear hunting. Leaving 
camp, the hunter walked ten miles due south, then ten 
miles due west. At this point, he found a bear and shot it. 
He dragged the bear back to his camp, a distance of preci-
sely ten miles. What color was the bear? (Costello, 1996).

Another formulation of the problem is: an explorer on 
the surface of the earth (assumed spherical) sees a bear 
100 yards due south. The bear then travels 100 yards due 
east while the explorer remains stationary. The explorer 
now fires a shot due south, which travels straight and true, 
and strikes and slays the bear. What color was the bear?  In 
his article, B. L. Schwartz (1960) provides the solutions to 
the problem using a Riemannian covering of the sphere.

Finally, the most common formulation of the problem 
is: a tourist leaves his camp and travels 10 km south, then 
10 km west, where he meets a bear. He then travels 10 km 
north and finds that he is back at his camp. What color is 
the bear? (Maths in action Group, 1994) This formulation 
also appears in Chern (2001), where H. Whitney tell us a 
story about this problem:

“I asked him [W. V. D. Hodge] one [question] that 
was recently going around Princeton: A man walked 
south five miles, then east five miles, then north five 
miles, and ended up where he had started. What 
could you say about where he had started? (Or more 
popularly, what color was the bear?) He insisted it 
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must be the North Pole, and proceeded to give a 
careful proof; but I got the sense he did not really 
believe his proof was correct. (Try Antarctica.)”

The Classical Solution
 
The classical solution is that the bear is white (Gardner, 
1994). The reason, in any formulation of the problem, is 
that the starting point is the North Pole and all is hap-
pening in a neighborhood of this point. 

Although a Google Search gives a lot of sources, blogs 
and videos about this classic problem, no progress has 
been done on this problem since the analysis by B. L. 
Schwartz (1960). 

	

Other Solutions

Other solutions that are known are the parallels 10 km 
above those with length 10/n km, where n is a natural 
number. It is easy to see that when the east movement 
completes exactly n turns around this parallel the con-
ditions of the problem are satisfied (Schwartz, 1960).

So, we formulate the classical problem as follows. 
 
Describe all points P in the 2-sphere with the round 
metric of radius R=6371 km such that moving P 10 
km to south, then 10 km to the east and then 10 km 
to the north, we get P back to the starting point.

Of course, the color of the bear is not important and 
we focus on the mathematical arguments that explain 
which are the possible solutions of this problem.

Our analysis of the Solutions

We proved that the North Pole and the parallels we men-
tioned earlier are all the solutions. Define three functions 
on the sphere, using cylindrical coordinates (t, eiq) ∈ 
[0,πR] x S1:

1)	 S, the function that takes a point P and yields a 

point 10 km south from P. That is, in coordinates, 
(t, eiq) → (t+10, eiq).

2)	 N, the function that takes a point P and yields a 
point 10 km north from P. That is, in coordinates, 
(t, eiq) → (t-10, eiq).

3)	 E, the function that takes a point P and yields a 
point 10 km east from P. That is, in coordinates, (t, 
eiq) → (t, ei(q + 10/Rsin(t/R))).

We take the domain of the S function to be the sphere 
minus the North Pole and the South Polar cap, starting 
at the parallel 10 km north of South Pole. The North Pole 
is excluded, since otherwise the function would be mul-
tivalued. Also note that in the chosen South Polar cap, 
it is not possible to travel 10 km south. Similarly, for the 
domain of the N function, we take the sphere minus the 
South Pole and the North Polar cap, starting at the para-
llel 10 km south of North Pole. With this definitions, we 
have that both functions, S and N, are bijective functions 
onto their image. The domain of the E function is the 
sphere minus the North and the South Pole.

We already know that the North Pole is a solution 
(Gardner, 1994).

Now, the other solution points P in the sphere must be 
in the domain of S and satisfy the equation:

N(E(S(P)))=P	 				    (1)

Note that left side of the equation implies P is in the 
image of N. So, the points P in sphere we are interested 
in satisfy equation (1) and P ∈  Dom(S) ∩ Im (N). Since N 
is bijective onto its image, note that in Dom(S) ∩ Im (N) 
we have N -1 = S. Applying N -1 to the equation we obtain

E(S(P)) = N -1(P) = S(P).	
 

Then, we need to understand the fixed points of the E 
function in the range of S,

E(S(P))= S(P).

But this E function is in fact a rotation of a circle, the 
parallel where S(P) arrives. We know that rotations of 
S1 have fixed points only when they make full n turns.

So, the solutions for the equation E(S(P))= S(P) are 
all points on the parallels with length 10/n, where n is 
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a natural number. We have this type of parallels in the 
north hemisphere and in the south hemisphere. So the 
point P must be situated 10 km above this parallels. Exis-
tence of these points in the south hemisphere can be seen 
straightforwardly and we notice that we have countable 
number of parallels as solutions. For the north hemis-
phere we need to determine whether there is a point 10 
km above a north parallel of length 10/n. 

Let r=10/2p be the radius of one parallel of length 10 
and let R=6371 be the radius of the sphere, the Earth. 
Then, the latitude is 

ϕ= sin-1(r/R)

and the distance from this parallel to the north pole is R 
ϕ ≈1.59 <10. So, none of the parallel solutions can occur 
at the north hemisphere.

Some general consequences
of the proof
	
One can find in popular literature that the problem is 
related to spherical geometry or spherical trigonometry 
(Goldin, 1998; Klamkin, 1968; Van Brummelen, 2013). 
The proof presented earlier clarifies this misconception.

To make the north and south movements we use me-
ridians, that is, geodesics of the sphere. The geodesics 
are the straight lines of the sphere in the sense that they 
minimize local distance. However, the movements to the 
east are being done through parallels, which are not geo-
desics of the sphere. The main characteristic of parallels 
is that they are orthogonal to the meridians. Hence, if we 
are allowed to use non geodesic orthogonal paths, we do 
not really need the geometry of the sphere to construct 
such paths that return to the original point. For example, 
as shown below, one can take polar coordinates in the 
Euclidean plane. That is, we are not using the geometry 
of the sphere, just a local behavior that can be reprodu-
ced on the Euclidean plane.

More precisely, consider the warped manifold I x S1 (I 
an interval [a,b], with (b-a)>10, and S1 parametrized by 
eiq, q in [0,2π)) with the metric g=dt2+j2(t) dq, where j is 
positive in the open interval (a,b), at least C2, and satisfies 
initial conditions,  j (a)=0, j’(a)>0. 

We define, as before, the following functions:

1)	 N, displacement along I, towards a. That is (t, eiq) 
→ (t-10, eiq). 

2)	 S, displacement along I, towards b. That is (t, eiq) 
→ (t+10, eiq).

3)	 E, displacement along S1, for fixed t. That is (t, eiq) 
→ (t, ei(q + 10/j(t))).

N is defined only on [a+10, b) x S1. S is defined only on 
(a,b-10] x S1. And E is defined on (a,b) x S1.

If one considers a=0, b=∞, j (t)=t, then we have the 
Euclidean plane. If j (t)= R sin (t/R), we recover the 
example of the Sphere. We may also consider many other 
geometries, by choosing j (t); another typical example 
is j (t)=sinh(t), of course, the proof in the past section 
works also for these generalizations. And we have as 
solutions the point (a, ei0) in I x S1, and those points (t-10, 
e iq) in I x S1 such that n = 10/2πj (t), is a natural number. 
Hence, one notes the following.

Corollary. If j  is non decreasing and 2πj (10)>10, then 
the solution is unique.

The Euclidean plane is included in this particular case.
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