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Abstract

From basicconcepts such as: ten sor cal cu lus (Fliigge, 1972); func tional anal y sis (Mikhlin, 1964) and solid
me chan ics (Soedel, 1972) the ob jec tive of yhis objetive is to show that be sides the “n” covariant func tions (of
functional anal y sis), linearly in de pend entand not neces sar ily or thogo nal, there isanother group of “n”
contravariant func tions that are biorthogonal to the for mer group. The pre sen ta tion of these twofami lies
givesrise toa new for mu la tion of func tional anal y sis in skew co or di nates. We will see that the con cept of skew
manifoldsfindsimmediateapplicability tothe prob lemofinter polation of ar bi trary func tions via the use of
the new con cept of covariant and contravariant poly no mi als. The the ory and the ex am ples denon strate that
the prob lems of in ter po la tion and Fou rier anal y sis can be grouped into one sin gle the ory.

Keywords: Interpolation, indexnotation, covariantand contravariant poly no mials, gen eral skew
man i folds (Ten sor cal cu lus), tensorial the ory of func tions, con ver gence.

Resumen

A partir de conceptos basicos de célculo tensorial (Fliigge, 1972), andlisis funcional
(Mikhlin, 1964) y de mecanica de soélidos (Soedel, 1972), el objetivo de este articulo es
demostrar que ademéas de las “n” funciones covariantes (de andlisis funcional),
linealmente independientes pero no necesariamente ortogonales, existe otro grupo de
“n” funciones contravariantes que son biortogonales al grupo ante rior. La presentacion
de estas dos familias de funciones da origen a una nueva formulacion de anlisis
funcional en coordenadas oblicuas. Veremos que el concepto de espacios coordenados
oblicuos encuentra aplicacién inmediata al problema de interpolacion de funciones
arbitrarias via el uso del nuevo concepto de polinomios covariantes y contravariantes. La
teoria y los ejemplos demuestran que los problemas de interpolacién y andlisis de
Fourier se pueden agrupar y tratar dentro de una sola y unica teoria.

Descriptores: Interpolacién, notacién indice, polinomios covariantes y contrava-

riantes, espacios gener ales oblicuos (célculo tensorial), teoria tensorial de funciones,
convergencia.

Introduction panorama since there are no answers to those

questions (Carnaham etal., 1969) and (Forsythe

One of the most controversial topics in numerical et al.,, 1977). When try ing to ap prox i mate a given
analysis is the problem of interpolation and a great arbitraryfunctionf(x) with some poly no mial

variety of approximate methods can be found. Ho-
wever, when we ex am ine “Why and in what sense are
those methods accurate" we find a disenchan- ting
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it is a common procedure to selectn + 1 points
and to ob tain the g, coefficientsfromthesolution
of the following n + lequations

1 2 3 n
& taXo taX *tagK, t.taX =f(X)

B +aXi+ &X +asXs fo.tax =f(x) (1)

8 +aX,+ X, tagx; .. +ax) = f(x,)

It is clear that the choice of the n + 1 points is
not unique, and de fin ing which group is the best is
a tremendous task. There are a great number of
possible sets of points to be selected. However,
we can not decide conclusively from which group
of points we can get our best ap prox i mation tof(x).
Quite easily we come across statements like
(Forsythe et al,, 1977) “The crite rion of reason able -
ness (of a given polynomial approximation to a
function f(x)) may vary from problem to problem
and may never be satisfactorilyunderstood”. When
we deal with measured or tabulated values of a
function f(x) that depends on x, one possible ap-
proach could be the method of di vided dif fer ences
of Newton. Unfortunately, the same doubts arise
with re spect to the ap prox i mation and the sense of
convergenceofthe proposedinterpolations.

In experimental analysis, it is usual to cull ex-
perimentalvalues f,(x) and val ues of the ex perimen-
tal variablex . The problem is to find (Fraleigh and
Beauregard, 1990) some function f(x) = ry + r; X
with certain values of ry and r, that fits accurately
our ex per i ments. How ever, no men tion is made of
the sense and rate of con ver gence of the func tion
f(x) ob tained. We only note that some how our func-
tion ap proaches very closely our data points f (x).

Maybe one of the most pop u lar meth ods is the
one pro posed by Lagrange. It of fers the pos si bil ity
of getting one specialpolynomialthatreproduces
exactly each and every data. However the same
doubt arises regarding exactness of our approxk
ma tion. At this point it has to be noted that, one
major drawback of other methods is the handling
of se quences like, (1,x, X2, x3,..., X" notorthogo nal
among them by using the Gram-Schmidt
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orthogonalization procedure in an attempt to get
sim plicity. Inview of this, itis not sur prising thatin
many problems of interpolation we resort to or -
thogonal polynomials like those of Laguerre,
Chebyshev or Legendre among many others. The
reason for this choice is, ap par ently, a better con -
vergence. How ever, noclear definitions of conver -

gence are pro vided.
Searching for some clues to the con ver gence of

someinterpolating polynomial we find the follo-
wing Faber’s The o rem (Forsytheet al ., 1977):

“Forany interpolatingarray thereexistsacontin u-
ous func tion g and an x in [a, b] such that Pn(g)(x)
does not con verge to g(x), asn ® ¥ ”.

An example of this problem of divergence is
Runge’s Func tion pre sented inref er ence (Forsythe
et al., 1977).

Up to this point we have been speaking of in ter-
polation with orthogonal (Legendre) and with
nonorthogonal functions via different methods
with outmentioningthatthe problemofinterpola-
tion of data or functions can be gathered in the
same math e maticalschemewhenwe develop the
concept of functional analysis with covariant and
con- travariant manifoldsf and f . This kind of
manifold re cently found and ap plied in the field of
dynamics (Urrutia, 1992a and 1992b) sets up the
basis for a generalized functional analysis with
skew manifolds. We note that in some references
(Urrutia, 1998) and (Bowen et al., 1976) attentionis
fo cused onone manifold u"and one dual manifold
vnwhich are biorthogonal and are associatedtoa
nonsymmetric trans for ma tion matrix A. For a sym -
met ric matrix both spaces are equal and no newin -
formationis given. In factin a pre vi ous paper it has
been seen that if the ma trix trans for mation is sym -
met ric we can still be able to cal cu late both mani -
folds which are identified now as un u"=f
(covariant manifold) and g=fn contravariant mani-
fold). Be sides, we will not be only con cen trated in
the problem of existence, already tackled in
(Urrutia, 1992a and 1992b), but rather in the di rect
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use of these mathematical tools in the solution
and ap plication of real prob lems.

Theory

Given a set of covariant func tions f_ linearlyin de-
pendent(notnecessarily orthogo nal)inagivendo-
main W, there is anotherset f " of contravariant

functions biorthogonal to the for mer ones. There-
fore, given an ar bi trary func tion F in the same do-

main Wwith norm ¢Fg can be de composedinthe
followingman ner

-~ & ..
F=a f'f, @
n=1
In covariant basis f_ and contravariant com po-
nents fr (sca lars) or in the form

F=a f.f, )

in contravariant basis f " and covariant components

fa(sca lars). There fore if equa tions (2) and (3) are avail-
able we can calculate the norm of the function (or
vec tor, Urrutia, 2003) F in the following way

¥
vEy2= g 1,

n=1

VoY \/5 f'f_

n=1

which for skew coordinate functions is the coun-
ter partand con stitutesagen er al iza tion of the Py
thagoreanthe oremusedinrectangularsystemsin
the the ory of vec tors.

A particular case oc curs, when the manifold Tn

is or thogo nal or orthonormal. In this case all mem-
bers of the covariant manifold f , are both lin early

independent and orthogonal. The contravariant
basis f " are collinear to the functions f, and

therefore, " is identical to f .. In the same way

f'= f.. Thus from equa tion (4) the norm of the func-
tion F is equal to

Flbr =4 5
\‘ w1 W

|

for orthogonal linear manifolds. For the general
case of skew coordinates, if the covariant and
contravariant approximations are complete and
convergent we must respect the following two
equations

¥
F=/af"t (6a)

\‘ n=1
F2 A 17, (6b)

n=1

Which are the Parseval and Bessel conditions
re spectivelyforskewco ordinates.

Norms of Skew Vectors and
Continuous Functions

Be fore embarking onfurtherde vel op ments, we will
define several operations used for discrete (vec-
tors, Urrutia, 2003) and continuous functions in
order to cover both cases in one pre sen ta tion.
The sca lar prod uct of two vec torsf _ andf _ (or
£ ") and the en ergy norm of the same vec tors with
respect to the operator K are defined by the

following two equa tions

< ?‘n Tﬂ >:~;1T‘Fm (7)
<TKaf>=8a0 K ®
=l =l

where f _ stands for a column vector, f' is a row
vector which is the transpose of Fn and K., is a

transformationmatrix.
The scalar prod uct of two func tions f ,and f

(or ™) and the en ergy norm of the same func tions
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withre specttotheoperator K ,, are de fined by the
followingtwoequations

<f, . >= v, 0F, (x)dx ©)
— — y ¥y - —
<P Kmfn>=a a M 00K f (X (10)
1 1

Despite their different aspect, equations (7) to
(10) stand foranin te gration pro cess.

Covariant and Contravariant Basis for
Continuous Manifolds

We de fineamanifoldinado main W by a set of
contravariantfunctions f " linearlyindependent. A

sec ond group of covariant base func tions f , is de-

fined in the same do main Win such a way that the
scalar prod uct be tween these two kinds of co or di
nates leads us to the Kronecker symbol d’ as
follows
Im =n
(‘)NT“f]a\de"n,f““dfn” = (11)

Om1n

Anarbitrary functionF can be re solved in these
two man i folds as fol lows

— & —

F=a c,f (12)
n=1

—~ &5 —

F:a ¢ N (13)

Where C" and C , stand for, the contravariant
and the covariant components of F. Any conti-
nuous function can be decomposed in covariant
and contravariant basis f, and f . So, it can be

shown that when we attempt to resolve the
covariant base function f, in covariant com po-

nents the followingresultisob tained

Fo=F F+F 7 +F T+ (14)
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In tensor notation

=, it

Recall that T, <, =f, <, andf ,, =f ,. In the
same fashion the following decomposition is
possible

']?"n =f nm:rm (16)

In the last two equations f ,, and f"m are the
covariant and contravariant metric ten sors of ten -
sor cal cu lus. Usually, it is easy to choose an ar bi -

trary and com plete set of covariant base func tions.
The difficult part had been to find the con-
travariant base functions, to overcome this diffi-
culty we continue as follows. By hypothesis we
know that the Kronecker delta func tion is ob tained
when the fol low ing prod uct is per formed (Urrutia,
2003) (nowanintegral)

fofm=dn (17)
Using the re sults (15) and (16) we find
<f F°f™F, >=d"
f f™d =d’ (18)
f f™=d
When we fix the value of m and we perform the

sum ma tions over the re peated index s, the follo-
wing set of mmetriccom ponents f™ is obtained

fof ™ +f o f A f T L f "+ =d)
lef " +f zzf " +f 23f " +f 24f " +"'+:d;n (19)

f31f ml +f32f m2 +f 33f m +f 34f m +...+=dén
etc

To illustrate the use of equation (19) let us
assume that the linear manifolds T, and ™ have
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only three components. Then equation (19) will
pro vide us with three sys tems of equa tions. If in
equa tion (19) we set the value of m = 1 one set of
equationsis ob tained as fol lows with f ,,, known

fof L +f  f 2 +f ,f2 =1
fof & +f of 2 +f 5f © =0 (20)
fofl 4 f 2 +f f °

1
o

That in ma trix form leads to

du fo fngqlu ai

(;le fa %123:2)3 (21)

8f31 fa f&a@Bé &g

D

Insimilarfashion

ghn fo fegf”™0 @i
(;le fy f23+2:223=g-3 (22)

gfsl fa fxa% H &4

And fi nally,
€§11 fio f 12 @ 0 &u
(;,f 2 o 2 3 g)g (23)
Sf a1 fa f 33 £ H élg

From this the elements (f™) of the contrava-
riant metric tensor (3 ~ 3 tensor) are calculated.

With the covariant and contravariant metrics f

and fm available we can calculatethe contrava-
riant base func tions as fol lows

Tn =f mn']?'m (24)

We can now con tinue with any fur ther anal y sis.

Example 1

Given a set of three skew covariant func tions f ;=
1, f,=x2and f, = x¢findthe corre spondingset

of contravariant functions in the domain —1£ x

£+1. Odd powers (x, x3, x5, etc) do not intervene
be cause in a later ex am ple the cos (x) function (an
evenfunction)willbeanalyzed.

First, we have to find the elements of the
covariant metrics as fol lows

<f, f c‘) T =fm
\ f o =(‘)_1(])2dx =2

\1 2
f o =0_1(1)x dx=2/3

In similar fashion we find the rest of the ele-
ments to ob tain

2 2/3 2/5
fm=52/3 2/5 2/7.

§2/5 217 219

From equation (19) we find the following
equation

22 213 2/5oe‘°°u aé_o
$2/3 2/5 2/7- ef02

g 04u g
€215 217 219, ¢ go

From where, we ob tain the first row of the me-
trics matrix f mn. With a similar procedure we get

two more equa tions and the rest of the elements
of fmn

7578 -82081 73828 o
f™=¢-8.2031 689063 - 738281
§73828 -738281 861328

With the metric elementsf ™ we can get the
contravariant basis f " from equa tion (16)

f° =17578 - 82031(%) +73828(x*)

f° =17578 - 82031X +738284x"
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Similarly,

f

=-82031+68.9063° - 738281x"
and ' =7.3828- 738281x* + % 1328x"

The reader can ver ify that the fol low ing equa-
tion holds true

<F.F">=, T 0" x)dx=d]

1 n

Example 2, an Application to
Interpolation

Find a poly no mial ap proximationin three termsto
the function cos ( x) in the do main [-1, 1] with the
followingform

cos(X) = + ¢ +¢'x*

cogx) =c’f, +cf,+Cf,

Use the covariant functions f, and the con-
travariant functions f n from example 1. Accordingto
reference (Carnahamet al ., 1969) that uses Chebyshev

poly no mi als the so lu tion to this problemiis
0s(x) =099995795 - 049924045 x* +003962674 X"

Solution

When we dot mul ti ply equa tion (23) by the co or di-
nate func tion f ®we getthe following

<7 cos()>=<F", (F, +F, +c'F,)>

If we remember that <?”,?m>=d;, it is clear

that the coefficient < is obtained from the follo-
wing equa tion, writ ten now in form of anin te gral

Qll%”o cos(x)k = €

Withf © = 1.7578 — 8.2031 x2 + 7.3828 x.

6 INGENIERIA Investigacion y Tecnologia

When the integral is evaluated we see that =
0.999958197. If we now per form the sca lar prod uct
of equa tion (24) T 2we will get the fol low ing

<f? cos)>=<f2,(C"fo +¢F, +¢ Fl)>

From where it is clear that the coefficient ¢2 is
equalto

Where f2=- 8.2031+68.9063 x2— 73.8281 x4.

When the integral is performed we see that c?=
—.4999309946. In similar fashion we find ¢4 =
0.039793817. Therefore, we have that within the
interval —1£ x £ 1 the best approximation to the
function cos (x) is the fol lowing

0s (x) = 0999958197 - 0499300946 X

+0.039793817 x*

In the basis f, = 1,f, = x2and f, = X,. Ho-
wever, thisap proximationto cos(x) is not unique as
we can re sort to the contravariant func tions f 0, f2
and T4 from the first example.To make this fact
clearer,werequirethefollowingap proximation

oos(x)=¢ F° +¢,F2+¢ T

This is now dot mul ti plied by Ty = 1 as fol lows

<Fy, 080 >=<F,(c, T +c.F? +¢,F%)>
From where the fol low ing re sultis ob tained

Ollﬁ cos(x)k =,

When the integral is done we see that ¢=

1.682941973. When To is re placed by?z and by f~4
we ob tainc¢,=0.478267241 and the last co ef fi cient
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¢, = 0.266153329. Therefore, the function cos (x)
can be equally rep re sented by

cos(x) =1682941973F° +0478267241F*
+0.266153320 f * (26)
withf 9,2 yf 4given by the fol lowing func tions
f° =17578 - 82031 X2 +738284 X*
f?2 = 8031+689063x? - 73881x'
f* =73828 - 738281x* + 861328 %'

Equations (25) and (26) some how fall very close
to the solution (24) giveninreference (Carnahamet
a., 1969). At this point we note that from the three
possibleapproximations(24)to(26), thesolutions
(24) and (25) that use the same covariant basis f,

are comparable. The problem now is to decide
which of the so lu tions (24) and (25) is the best and
in what sense. Any approach with given c¢"and c,
must satisfy equations (6a) and (6b) of Parseval
and Bessel for skew man i folds. In this con nec tion,
Table 1 pres ents the co ef fi cients of the three ap-
proximations (24) to (26) to the function cos (x). In
columns 2,3 and 4 are lo cated the co ef fi cients cal
culated according to the methods of Chebyshev
and those of the pres ent paper. When for mula (6b)
is applied using the coefficients of columns two
and four we obtain the squared norm Y20s(x)¥2 =
1.45464763 and we get the squared root of this

value we in turn obtain the norm cogx)=
1.20608774. When the coefficients of columns
three and four are equally multiplied we find that
the norm of our func tion is¥zos(x)= 1.206088186.
When we find the differences of these two norms
with respect to the exact value Ygos (X)¥=
1.206088187 (cal cu lated at the bot tom of table 1)
is 0.00000045 and 0.000000001 respectively, for
the Chebyshev and the covariant approximations
in the sense of norm. From this we conclude that
the error of the covariant representation is 450
times smaller that the Chebyshevap proximation.

As we can observeneither the Chebyshev nor
the Contravariant approximations overshoot the
exact norm ¥zos (x)= 1.206088187. There fore we
can now confirm that both solutions satisfy the
Bessel’s inequality (6b). Up to this point we have
accomplished several goals. First, we have ob-
tained the best approximation to cos (x), Iin
covariant basis, sec ond, we have found a new ap -
proximationthe contravariant thatal lows ustore -
cover the simplicityof the Pythagorean theorem,
with equa tion (5), for the han dling of the con cepts
of NORM and CONVERGENCE in skew manifolds.
In addition we knew (Carnaham et al, 1969) that
the Chebyshevap proximationhadanerrorsmaller
than 4.234x10 -5 and now we have a new approxi-
mation the covariant with an error 450 times
smaller and with a rate of convergence that satis-
fies the convergence laws of Parseval and Bessel.
This in turn allows us to focus our attention on
polynomials with powers higher than four and to
ap pre ciate other problemsofnumericalanalysis.

Chebyshev4 Contravariant Covariant
ao 0.99995795 0.999970781 1.68294197
a2 -0.49924045 -0.499384548 0.478267252
at 0.03962674 0.038408595 0.266153368
Y505 (Y Y2 1.20608774 1.206088186
error 0.00000045 0.000000001
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Higher Order Polynomial approxima-
tions to cos(x) for —1£ x £1

According to what we have seen in this paper, in
principle, we can obtain a covariant and a con-
travariant polynomials that tend to cos (x) in all
points in the do main, i.e. we can ob tain

cos(x)=cfo +Cf o +¢'fa +.4¢"f

os(x) =¢,f ~ +c,f° +c,f ' 4.4 F

and the norm of %£os (xJ2 would be equal to cc,

+ @¢, + c4cq + ...+ " ¢, when n®¥ . How ever, as
we increase the order of the matrices f  and f m
we note that the matrix f ,,,has very small elements
of the order of 2/( 2( i + j)-3) that tend to zero
when i and j tend to infinite. The vari ablesiandj
stand for the i-th row and the j-th column. This
prob lem will lead us to the han dling of very ill-con-
ditioned matri ces of the kind of the fa mous ma tri-
ces of Hilbert with el e ments of the type 1/(i + j),
see ref er ence (Fraleigh and Beauregard, 1990). As it
is in di cated in (Fraleigh and Beauregard, 1990), for

ma tri ces of order greater than 10" 10 to day’s com-
putersac cu racy give rise to contravariant matri ces

(when they are cal cu lated) f ™ with ex tremely large
num bers that will lead us to diver gent re sults.

When we add the re sults of poly no mi als up to 10th
order to the results of the polynomial of fourth
order we obtain the coefficients shown in table 2.
At this point some doubts arise with re spect to the
values to which the coefficientsa" tend when n®
¥. We immediately note that a® is contained be -
tween 0.999970781 and 1.000000538, & changes

between —-0.499384548 and —0.500019533, a* be-
tween 0.039808595 and 0.41778820, a¢ between

—0.001342159 and —0.001585556 but now we see
that the coefficient of the tenth polynomial does

not con verge any more and it even changes its sign.

Besides, the alternating sign of the coefficientsof
the poly no mial of order fourth to eight is lost in the

8 INGENIERIA Investigacion y Tecnologia

tenth order poly no mial and this warns us that from
this point on —for some reason— we start having
numerical instability. From reference (Forsythe et
al.,, 1977) we might con clude that this divergence
may be the re sult of the Faber’s The o rem, shown in
theintroduction. How ever we can notac ceptitbe -
cause we know that the fol lowing ex pan sion exists

cos(x) =10 - L el oLy ve

2! 41 6!

and whose coefficients exactly fall between the
limitingval uesinwhich the co effi cients of poly no -
mi als of fourth to eighth de gree. The tenth de gree
poly no mial starts to diverge fromexpansion (27)in
view of the ill conditioningof the matrixf as it
can be seen in equation (21). Working with dou ble
or higher pre cision we re cover some ex act ness but
soon we confront divergent approximations for
higher val ues of n again. In table 3 we pres ent the
exact first eleven sig nif i cant con- travariant co ef fi-
cients ob tained from equa tion (27), that our in tu -
ition suggests must be the coefficients that we
should ob tain in table 2 if we will in crease the pre -
cisionofourcalculations. Followingasimilarpro -
cedure to the one used to calculate the
contravariant poly no mial (26) the covariant co ef fi-
cients ¢, were cal cu lated and are pre sented in the
third column of table 3. If the co ef fi cientsa” and a,,
of table 3 are certainly the contravariant and the
covariant co effi cients ofcos x be tween —1£x£1then
if we calculate the norm of this function using
equation (4) we must satisfy Bessel's inequa- lity
(6b) when n ® ¥. In this sense it is readily ob-
served that in the fourth col umn of table 3 we pre-
sent the ac cu mu lated norm of cos (x) when we use
equation 4. When n=10 the squared norm is
Y£08(x)¥2=1.454648715 (smaller than 1.454648716)
and itis not af fected any more for the in clu sion of
the rest of the elements. From this we conclude
that the poly no mial (27) con verges to cos (x) every-
where inthe domain—1£ x £1 and con verges to the
norm of cos (x) ac cord ing to the Bessel’s in equal ity
(6b). In order to ob serve one more ef fect of the di -
vergence of the different approximationsto cos (x)
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we obtained the norms of contravariant coefft
cients of table 2 and the covariant coefficientsof
the third column of table 3. The different approxi
ma tions to the norm of cos (x)are shown in the last
row of table 2.

As it can be seen, the norm of the poly no mial of
fourth order is 1.454648713, the polynomial of
sixth de gree has a norm of 1.454648692 (ac tu ally it
starts to diverge) and up to this point there is no
major objection. However, the last two columns
show norms that are greater than the exact value
of 1.454648716 and this is a clear violationof the
Bessel’sin equal ity (6b) and a proof of di ver gence.

Table 2

CONTRAVARIANT COEFFICIENTS OF POWERS 4, 6, 8 AND 10

an 4 6 8 10
a’ 0.999970781 0.999999835 1.000000538 0.999997793
a2 —0.499384548 -0.499994769 -0.50001953 -0.49987840
a4 0.039808595 0.041638979 0.041778820 0.040454756
L -0.001342159 -0.00158556 0.002279407
a8 e e 0.000129896 -0.00450388
al® e e e 0.002038310
NORM 1.454648713 1.454648692 1.454648824 1.454650073
Table 3
n an eq (28) Covariant coeffic. a Norm of cos (x) cumulative sum ana,
0 +1.00 +1.682941970 1.682941970
2 -0.50 0.478267252 1.443808344
4 +1/41 0.266153368 1.454898068
6 -1/6! 0.181968530 1.454645334
8 +1/8! 0.137541095 1.454648745
10 -1/10! 0.110289862 1.454648715
12 +1/12! 0.091937628 1.454648715
14 -1/14! 0.078765706 1.454648715
16 +1/16! 0.068865056 1.454648715
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Conclusions

From examplel it is concluded that given a se-
guence of covariant func tions (com plete)f ,there

exists another set of contravariant functions f"
which is biorthogonal to the for mer one and that
satisfies the Kronecker Delta function<fm f ,>=
d'. From example 2 we saw that any polynomial
approximation to any function f(x) can now be
tack led by using the con cept of manifold the oryin
skew co or di nates. We must be only care ful with the
convergenceanalysisthatisdirectlyrelated to the
precision of the computing device available. As it
was ob served, the the o rem of Faber that de nies
the existence of a polynomial P (x) that ap-
proaches f(x), everywhere,as n ® ¥ is not valid.

The problem of divergence shown in reference
(Forsythe et al., 1977) is due to the lack of preci-
sion rather than to ques tions re lated with the ex is-
tence or non existence of a polynomial P,(x) that
approachesf(x) asn¥ . Theproblemofinterpolation
can now be seen as analysis in skew manifolds
where equations (6a) and (6b) of Parseval and
Bessel can be used to guar an tee con ver gence of our
approximatingpolynomials. Toavoidduplicationof
work the in ter ested reader should re view ref er ences
(Urrutia, 1992a and 1992b), to get a deeper in sight
inthe me chani cal and physi cal mean ing of the ma-
nifold the ory pre sented in this paper.

Future Work

As a fol low up to the find ings of ref er ences (Urrutia,
1992a, 1992b and 1998), and of the present paper
we will use the same the ory now fo cused on the so-
lution of nonlineardifferentialequations. Aswewill
see, using covariant and contravariant manifolds
will al lows us to ob tain an easy and novel method of
solution for thiskind of nonlin ear prob lems.
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