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Abstract

In this paper we propose a fractional differential equation for the electrical 
RC and LC circuit in terms of the fractional time derivatives of the Caputo 
type. The order of the derivative being considered is 0 <  ≤ 1. To keep the 
dimensionality of the physical parameters R, L, C the new parameter σ is 
introduced. This parameter characterizes the existence of fractional structu-
res in the system. A relation between the fractional order time derivative  
and the new parameter σ is found. The numeric Laplace transform method 
was used for the simulation of the equations results. The results show that 
the fractional differential equations generalize the behavior of the charge, 
voltage and current depending of the values of . The classical cases are re-
covered by taking the limit when  = 1. An analysis in the frequency domain 
of an RC circuit shows the application and use of fractional order differential 
equations.
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Introduction

Although the mathematical foundation of Fractional 
Calculus (FC) was established over 200 years ago, there 
remains a subject quite new to mathematicians. FC, in-
volving derivatives and integrals of non-integer order, 
is the natural generalization of the classical calculus 
(Oldham and Spanier, 1974; Miller and Ross, 1993; Sa-
mko et al., 1993; Podlubny  et al., 1999; Uchaikin, 2013). 
Many physical phenomena have “intrinsic” fractional 
order descriptions and so FC is necessary in order to 
explain them. In many applications FC provides more 
accurate models of the physical systems than ordinary 
calculus do. Since its success describing anomalous 
diffusion (Wyss et al., 1986; Hilfer, 2000), (Metzler and 
Klafter, 2000; Agrawal et al., 2004) non-integer order 
calculus both in one- and multi-dimensional spaces, it 
has become an important tool in many areas of physics, 
mechanics, chemistry, engineering, finances electro-
magnetism and bioengineering (Petras, 2010; Obeidat et 
al., 2011; Hilfer, 1974; West et al., 2003; Rosales et al., 
2012; Magin et al., 2006; Gómez et al., 2012c; Gómez et 
al., 2012d; Caputo and Mainardi, 1971). Fundamental 
physical considerations in favor of the use of models 
based on derivatives of non-integer order are given in 
Westerlund (1994), Veliev (2004) and Baleanu et al. 
(2010). The advantage of using fractional order systems 
compared with systems of integer order is that the for-
mer has infinite memory, while others have finite me-
mory. This is the main advantage of FC in comparison 
with the classical integer-order models, in which such 
effects are in fact neglected.

To analyze the dynamical behavior of a fractional 
system it is necessary to use an appropriate definition 
of the fractional derivative. In fact, the definitions of the 

fractional order derivative are not unique and there 
exist several definitions, including Grünwald-Letnikov, 
Riemann-Liouville, Weyl, Riesz, and the Caputo repre-
sentation. In the Caputo case, the derivative of a cons-
tant is zero and we can properly define the initial 
conditions for the fractional differential equations so 
that they can be handled analogously to the classical 
integer case. Caputo derivative implies a memory effect 
by means of a convolution between the integer order 
derivative and a power of time (Podlubny, 1994; Gutié-
rrez et al., 2010). For these reasons, in this paper we pre-
fer to use the Caputo fractional derivative defined by:

( )1 ( )
( ) ,1( ) 0 ( )

nt f
D f t dnn t

τγ τγγ τ
= ∫ + −Γ − −

		  (1)

where n–1 < γ < n (n is N), and f (n)(τ) represents the de-
rivative of order n, real function evaluated in t. Wor-
king with this definition is important because of the 
ability to be implemented numerically (Podlubny, 
1994). The Caputo derivative has the following proper-
ty: if f (t) is a constant, then its derivative is zero. This 
does not happen with other representations. Another 
very important feature in the form of Caputo fractional 
derivative is that its Laplace transform is:

					              (2)
	

From equation (2), we can see that the representation of 
the Caputo derivative in Laplace domain using the ini-
tial conditions f (k)(0) where k is integer. If the initial con-
ditions are zero, this reduces to:
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Resumen

En este trabajo se propone una ecuación diferencial fraccionaria para los circui-
tos RC y LC en términos de la derivada fraccionaria en el tiempo del tipo Caputo. 
El orden considerado de la derivada es 0 <  ≤ 1. Para mantener la dimension-
alidad física de los parámetros R, L, C, se introduce un nuevo parámetro σ. Este 
parámetro caracteriza la existencia de estructuras fraccionarias en el sistema. Se 
encuentra la relación entre el orden de la derivada fraccionaria  y el nuevo 
parámetro σ. El método de la transformada numérica de Laplace fue usado para 
la simulación de las ecuaciones resultantes. Los resultados muestran que las ec-
uaciones diferenciales fraccionarias generalizan el comportamiento de la carga, 
voltaje y corriente dependiendo de la elección de . Los casos clásicos se recu-
peran en el límite cuando  = 1. Un análisis en el dominio de la frecuencia de un 
circuito RC muestra la aplicación y uso de ecuaciones diferenciales de orden 
fraccionario.

Descriptores: 

•	 circuitos eléctricos
•	 cálculo fraccionario
•	 funciones de Mittag-Leffler
•	 estructuras fraccionarias
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				    	 (3)
			 
This is consistent with the usual definition of the Lapla-
ce transform when γ is an integer. In general, a fractio-
nal order differential equation has the form

				    	 (4)
 			 

where k > k–1 and ak are any real numbers, g(t) can be 
seen as the source of a dynamic system. Inverse trans-
form 0 <  ≤ 1 requires the introduction of a special 
function. The Mittag-Leffler function, where Γ is the 
gamma function, which is defined as

						      (5)
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from (5) if a = 1, b = 1, we obtain the expression E1,1 (t) = et. 
The Mittag-Leffler function is a generalization of the ex-
ponential function.

Numerical Laplace transform 

The Laplace transform is a useful tool for analyzing li-
near systems because it simplifies the problem of dea-
ling with differential equations in the time domain by 
converting them into algebraic equations within the 
frequency domain. The numerical Laplace transform 
(NLT) is essentially a modified discrete Fourier trans-
form (DFT) through a windowing function (Gibbs phe-
nomenon) and a stability factor (aliasing), (Proakis and 
Manolakis, 1996). Development of the NLT and its 
application to the analysis of systems has been well do-
cumented over the past 40 years (Ramirez et al., 2004; 
Wilcox and Gibson, 1998). However, its use has tradi-
tionally been limited to the analysis of problems where 
the result can be expressed in terms of simple functions 
that allow the use of tables of Laplace transforms (Mo-
reno and Ramírez, 2008). When using discrete techni-
ques in the frequency domain, computation time 
becomes an important factor since it requires a certain 
amount of time to transform the data from the frequen-
cy domain to the time domain or vice versa. However, 
by using the fast Fourier transform (FFT) the time ne-
cessary for computation is greatly reduced and as a re-
sult the techniques of analysis in the frequency domain 
become an attractive option.

Sheng investigated the validity of applying numeri-
cal inverse Laplace transform algorithms in fractional 
calculus (Sheng y Chen, 2011). In a paper of Gómez 

(2012b), an overview of a methodology based on the 
NLT and applied to the analysis of electromagnetic tran-
sient phenomena in power systems described by diffe-
rential equations of fractional order, a Newton-type 
methodology to calculate either the transient or the pe-
riodic steady state is used and the definition of Caputo 
fractional derivative is applied. To electrical networks 
including nonlinear reactors and electronic devices.

In the present work we are interested in the study of 
a simple electrical circuit consisting of a resistor, an in-
ductor and a capacitor, in the framework of the fractio-
nal derivative applying the method of the NLT for the 
simulations.

Description

Using the Kirchhoff voltage law and the circuit of Figu-
re 1, we have:

Figure 1. Circuit with a fractal element and a capacitor

E(t) = Ve(t) + VC(t),			   (6)

where E(t) is the source voltage, Ve(t) is the voltage in 
the fractal element and VC(t) is the voltage in the capa-
citor. The voltage in the fractal element is

 			   (7)

where β {1, 2} is a parameter that determines whether the 
element e is a resistor or inductor, 0 <  ≤ 1, the product β 
determines the order of the fractional differential equa-
tion e {R, L} defines the characteristics of e, σ is a parame-
ter that determines the fractional structures of e.

Fractional electrical circuit RC

Taking in (7) e = R, β =1, σe= σR , the fractional differen-
tial equation for RC circuit is
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	 (8)

Recently Gómez et al. (2012a) proposed a systematic 
way to construct fractional differential equations for the 
physical systems. Such a way consists in analyzing the 
dimensionality of the ordinary derivative operator and 
trying to bring it to a fractional derivative operator con-
sistently.

The introduction of the parameter σR allows dimen-
sional consistency when [σR] = sec

			             ,	  (9)

with  = 1 the equation (9) becomes an ordinary diffe-
rential equation the first order with respect to time t. 
This is only true, as stated above, if σR has dimensions 
of seconds.

Using the expression (8), the fractional differential 
equation for a circuit of a capacitor and a resistor has 
the form

 	                          ,	 (10)

with

γ 1 γτ
σ 

R

RC
 			   (11)

The constant τ also can be called fractional time cons-
tant due to its dimensionality [sec]. When  = 1, equa-
tion (11) recovers the ordinary time constant, ie., 
τ1 = τ = RC.

The  parameter, which represents the order of the 
fractional time derivative in (10), can be related to the 
parameter σR, which characterizes the presence of frac-
tional structures (fluctuations) in the system. In this 
case the empiric relationship is given by the expression

σγ  R

RC
 ,			  (12)

thus, the magnitude

δ = 1 ‒ ,			  (13)

characterizes the existence of fractional structures in 
the system.

It can be seen this way: if  = 1, then, from (12) we 
have σR = τ = RC and hence δ = 0 in (13), which means 
that the system does not have fractional structures, it 
is an ordinary RC circuit. However, in the range 
0 <  < 1, or 0 < σ < τ, the quantity δ increases and tends 
to unity, since in the system each is again a fractional 
structure.

Assuming zero initial conditions, q (0) = 0 and  
E (t) = sin ωt, the Laplace transform applied to (10) re-
sults in

 
γ

γ
γ

( ) ( ) .
1τ
τ


 
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 
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(14)

The voltage in the capacitor is 

 
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γ
γ

1( ) ( ) .
1τ
τ


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 
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(15)

The current can be obtained applying inverse numeric 
Laplace transform in (14) and differentiating with res-
pect to time.

Fractional electrical circuit LC

Taking in (7) e = L, β = 2, σe = σL is obtained the fractional 
differential equation for the LC circuit is obtained

2γ

2(1 γ) 2γ

( ) ( ) ( ).    (0 γ 1)    
L

L d q t q t E t
dt C

 
                      

(16)	
	

Using the expression (16), the fractional differential 
equation for a circuit containing a capacitor and an in-
ductor has the form

2γ

2γ
γ γ
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dt  
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where

γ 1 γL
L

LC


 		
(18)

γ

1 γ γ

( ) ( ) ( ),     (0 γ 1)
σ − + = < ≤

R

R d q t q t E t
dt C

 

γ

γ
γ γ

( ) ( ) ( )+ =
d q t q t C E t

dt τ τ
 

 
γ

1 γ γ

1 1 ,         0 γ 1
sec

 
   

 R

d
dt

 



315

Gómez-Aguilar José Francisco, Razo-Hernández José Roberto, Rosales-García Juan, Guía-Calderón Manuel

Ingeniería Investigación y Tecnología, volumen XV (número 2), abril-junio 2014: 311-319 ISSN 1405-7743 FI-UNAM

The constant τL also can be called fractional time 
constant due to its dimensionality [sec]. When   =  1, 
from (18) recovers the ordinary time constant, this is, 
τL1 = τL =  LC .

The  parameter, as before, that represents the order 
of fractional time derivative in (17), can be related to the 
parameter σL, which characterizes the presence of frac-
tional structures (fluctuations) in the system. In this 
case the empiric relationship is given by the expression

σγ  L

LC
 			

               ,  	 (19)

thus, the magnitude

δ = 1 ‒ , 	 (20)

characterize the existence of fractional structures in the 
system.

You can see it this way: if  = 1, then, from (19) we 
have σL

2 = LC and therefore δ = 0 in (20), which means 
that the system has no fractional structures, is an ordi-
nary LC circuit. However, in the range 0  <  σ  <  LC , 
(undamped natural frequency), the magnitude δ in-
creases and tends to the unit, as in the system are in-
creasingly found fractional structures.

Assuming the initial conditions q (0) = q0,     (0) = 0 
and power supply E (t) = sin ω(t), the Laplace transform 
applied to (17) results,

0 γ
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The voltage in the capacitor is 

0 γ

2γ
γ

γ
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(22)

The current can be obtained applying inverse numeric 
Laplace transform in (21) and differentiating with res-
pect to time.

Results

All simulations used MATLAB 7.5. (R2007b), Figures 2, 
3 and 4 show the simulation for RC circuit γ = 1, γ = 0.98, 
γ = 0.96, for the charge, voltage and current, respecti-
vely, using R = 1 pu, C = 0.1 pu and ω = 2π60.
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Figure 2. Graph of the charge on the capacitor in the RC 
fractional circuit for different values of 
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Figure 3. Graph of the voltage on the capacitor in the RC 
fractional circuit for different values of 

q
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Figure 4. Graph of the current in the RC fractional circuit for 
different values of 

Figure 5. Graph of the current in the LC fractional circuit for 
different values of 

Figure 5 show the simulation for LC circuit   =  1, 
  =  0.98,   =  0.96, for the current, using L =  0.001 pu, 
C = 0.1 pu and  = 2π60.

Spectroscopy applied to a RC circuit

The electrical impedance spectroscopy technique applies 
a potential difference between the two electrodes by pas-
sing a low power alternating current through the sample 
and this is compared with the voltage and current detec-
ted to the output. To obtain the electrical impedance spec-
tra a Solartron® 1260 was used (Figure 6). The fidelity of 
the frequency sweep for these tests was important since it 
shows the characteristic spectrum of the sample, which is 
necessary for comparing with the electrical parameters of 

an equivalent circuit. The frequency range used was from 
10 Hz to 100 kHz. Once the measurements were repre-
sented in a Nyquist diagram, we obtained representa-
tions of equivalent electrical circuits via the software 
ZView®. The method of “instant adjustment” was used 
to fit the data to predefined circuit models. A voltage of 
25 mV was applied across the RC circuit.

Figure 6. Solartron® 1260

To determine the equivalent equation, the impedance is 
determined, which is given by the following formula in 
the complex frequency domain.

( )
( )

( )

V s
Z s

I s
= 			    (23)

Applying Kirchhoff laws to the circuit of Figure 1, we 
have:

s pv R i Vc= + 			   (24)

R ci i i= +  			   (25)

Before applying the Laplace transform of (24) and (25) 
must make the following considerations

p
R

p

Vc
i

R
= 			   (26)

p
c p

dVc
i C

dt
=  			   (27)

In applying the definition of fractional derivative (Pod-
lubny, 1994), we have:
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R

p
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R
= 			   (28)

p
c p

d Vc
i C

dt

γ

γ=  			   (29)

Substituting (28) and (29) into (25), we obtain:

= +s pv R i Vc  			   (30)

γ

γ p p
p

p

Vc d Vc
i C

R dt
 			    (31)

Applying Laplace transform to (30) and (31) is obtai-
ned:

( ) ( ) ( )s pV s R I s Vc s= +  		  (32)

γ
1 γ

( )
( ) ( ) p p

p
p

Vc s C
I s s Vc s

R 
 		  (33)

Finally from (32) and (33) we have:
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If, s = (jω), we have:
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Z j R R C

j


  			 
(35)

The equation (35) is the result of the fractional temporal 
operator in the equation for the RC equivalent circuit, 
this general formula includes an arbitrary constant sig-
ma and in the case particular to take the value of 
σ = RPCP is reduced to the Cole model (1941) and Gó-
mez et al. (2012). On the other hand, if we make γ = 1, 
we obtain the RC circuit ideal.

Figure 7 show the comparison of the Nyquist dia-
gram resulting between integer order equation (23), the 
spectroscopy and fractional equation (35), fractional ex-
ponent γ = 0.9825. This value was obtained by a least-
squares fit.
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Figure 7. Nyquist diagram, comparison between integer order 
equation (23), the spectroscopy and fractional equation (35), 
fractional exponent  = 0.9825 

From the Figure 7, it can be seen that the fractional di-
fferential equation (35) obtained describes best the mea-
surement of electrical impedance spectroscopy.

Discussion

The Figures 2 and 4 show the charge and current in the 
RC circuit, respectively. From Figure 3 can observe that 
as  increases from 0.96 to 1, the fractal element behaves 
as a resistor of resistance R for  = 1, intermediate values 
of  determines behavior between a capacitor and a re-
sistor. In the Figure 5 is observed a behavior inductive 
for  = 1, intermediate values determine behavior bet-
ween inductor and resistor.

It has been found that for every 0 <  ≤ 1, the load 
stored in the RC circuit is directly proportional to the 
voltage on the capacitor; it follows that the behavior of 
the charge on the capacitor will give identical curves to 
those shown in Figure 3.

This current behavior can be induced from voltage 
in the capacitor, for  = 1 will have a current value equal 
to the ratio between the supply voltage and resistance 
for t  =  0, and will decrease with time until it reaches 
zero, a full-order RC circuit.

As to the fractional LC circuit, is observed in Figure 
5, the current increases as the  values decrease from 1 
to 0.96 indicating losses in the LC series circuit, this can 
be seen because there is a damping voltage curves, typi-
cal of an RLC circuit with losses.
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Conclusions 

The fractional differential equation for the RC and LC 
circuits has been proposed. The relevant aspect of this 
work is the way to introduce the fractional derivatives 
operators, providing a systematic way to construct the 
fractional differential equations of any physical system 
keeping the dimensionality of the physical parameters. 
The order of the derivative being considered is 0 <  ≤ 1. 
To keep the dimensionality of the physical parameters R, 
L, C the new parameter σ is introduced. This parameter 
characterizes the existence of fractal structures in the sys-
tem (components that show an intermediate behavior 
between conservative and dissipative systems), the frac-
tional time components change the time constant and 
affect the transient response of the system (Guía et al., 
2013). A relation between the fractional order time deri-
vative  and the new parameter σ is found. The numeric 
Laplace transform method was used for the simulation 
of the equations results. The classical cases are recovered 
by taking the limit when  = 1. Also, the concept of frac-
tional time constant has been introduced.

From the description of the fractional differential 
equation models can be noted that the representation of 
the Cole model is generated to solve the RC circuit in 
the formalism of fractional calculus. The simulations 
obtained from the fractional representation showing a 
better description than those obtained by the equations 
of integer order. The exponent of the fractional diffe-
rential equation that best fits the RC circuit is γ=0.9825.

With the approach presented here, it will be possi-
ble to have a better study of the transient effects in the 
electrical systems. Also, the electrical circuit will provi-
de a robust framework for studying the bioelectrical 
response to transient stimuli, when an equivalent elec-
trical circuit has been used.
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