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Abstract

This paper presents the implementation of a method for image samples in-
terpolation based on a physical scanning model. It uses the theory to take 
digital image samples and to perform an implementation of such mecha-
nism through software. This allows us to get the appropriate parameters for 
the images amplification using a truncated sampler arrangement. The shown 
process copies the physical model of image acquisition in order to incorpo-
rate the required samples for the amplification. This process is useful in the 
reconstruction of details in low resolution images and for images compres-
sion. The proposed method studies the conservation of high frequency in the 
high resolution plane for the generation of the amplification kernel. A new 
way of direct application of the physical model for scanning images in 
analytic mode is presented.

Resumen 

Este trabajo muestra la aplicación de un método para la interpolación de muestras 
sobre una imagen basado en un modelo físico de digitalización de las mismas. Se 
utiliza la fundamentación teórica de muestreo de la imagen digital y se realiza una 
implementación de dicho mecanismo a través de un software. Esto permite obtener 
los parámetros adecuados para amplificar las imágenes utilizando el arreglo de 
muestreo truncado. Se imita el procedimiento físico de obtención de la imagen y se 
incorporan las muestras requeridas para la amplificación. Este proceso es útil en la 
reconstrucción de detalles de imágenes de baja resolución y para la compresión de las 
mismas. El método propuesto estudia la conservación de las altas frecuencias en el 
plano de mayor resolución para la generación del núcleo de amplificación y presenta 
una nueva forma de aplicar directamente el modelo físico de escaneo de la imagen en 
modo analítico.
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Introduction

This paper proposes a method for the construction of a 
pulse interpolation filter with maximum response am-
plitude at high spatial frequencies. This allows a better 
reconstruction of the details including the use of the 
characteristics of this type of amplification in order to 
achieve linear phase response in the edge transitions of 
the high resolution image. The preservation of edge in-
formation in an accurate frequency range gives a har-
monious visual effect to the image and prevents the 
formation of blocks. This type of filter is used in the am-
plification, image reconstruction and simultaneously 
facilitates the compression process.

In some applications, as an imaging amplifier for 
Space-Multiplexed Optical Transmission (Ozdur et al., 
2012) it is necessary to focus/collimate the light beam to 
the center of the bulk amplifier from the imaging sys-
tems (IS 1 and IS 2) of Figure 1 and then to couple back 
to the output fiber. The amplification effect of the bulk 
could be seeing as the electrical output of a more dense 
and sensible photo detector zone integrated over a pe-
riod of time. During this period the light beam activates 
the resolution cells, and then the simulation of a photo 
detector sampling zone is useful to simulate the ampli-
fication effects.

The medical-image analysis requires an understan-
ding of sophisticated scanning modalities, constructing 
geometric models, building meshes to represent do-
mains, and downstreaming biological applications. 
These four steps form an image-to-mesh pipeline (Levi-
ne et al., 2012).

The proposed method could be used as an edge-
preserving interpolation method after the denoise pro-
cess for noisy images. In some cases the image is first 
decomposed using the bilateral filter into the detail and 
base layers which represent the small and large scale 
features, respectively. The detail layer is adaptively 
smoothed to suppress the noise before interpolation 
and an edge-preserving interpolation method is applied 
to both layers, it is effective to employ denoising prior 
to the interpolation (Jong et al., 2010).

Some methods of interpolation, like the curvature 
interpolation method (CIM), study the edge composi-
tion of the low resolution image to interpolate the cur-
vature to the high-resolution image domain. The CIM 
constructs the high-resolution image by solving a linea-
rized curvature equation, incorporating the interpola-
ted curvature as an explicit driving force (Hakran et al., 
2011). Other regression-based image interpolation al-
gorithms have been proposed in the literature, in which 
the objective functions are optimized by ordinary least 
squares (OLS). However, it has been shown that inter-
polation with OLS may have some undesirable proper-
ties from a robustness point of view: even small 
amounts of atypical values can dramatically affect the 
estimates (Liu et al., 2011).

This investigation tries to find the limits of quality in 
the high resolution image. The curvature content in the 
high-resolution image domain is studied using classical 
theory resources. A restricted interpolation system is 
made with spatial and window filters in order to in-
crease the high frequency content. The proposed me- 
thod constructs an interpolation kernel using the high 
frequency content at high-resolution image domain as 
an explicit driving force for the variation of the amplifi-
cation kernel parameters. With this process, the optimal 
low-high resolution pair is found using the amplifica-
tion kernel given by the Fourier transform of the trun-
cated sampling arrangement (Papoulis, 1966). In the 
process filters as Butterworth (Pratt, 2001) and Canny 
(1986) are used in order to guide the construction of the 
interpolation kernel and to raise the high frequency 
content in the high resolution image.

Image sampling system

In a physical image sampling system the sampling 
arrangement should be of finite extent. The sampling 
pulses are of finite width and the image can be sub sam-
pled with spectral overlap. Because of these, spurious 
spatial frequency components will be introduced into 
the reconstruction. This effect is called aliasing error 
(Brown, 1969; Helms and Thomas, 1962) and therefore 
it is necessary to explore the consequences of the non-
ideal sampling.

In the example of Figure 2, a thin beam of light goes 
through a photographic transparency of an ideal ima-
ge. Passing light is collected in a condenser lens and is 
sent directly to a photo detector. The electrical output 
from the photo detector is integrated over a period of 
time during which the light beam activates a resolution 
cell. In this type of system is considered that even lens 

Figure 1.  General schematic of the imaging amplifier. (MCF and 
MMF are the multicore and multimode fibers; IS is the imaging 
system
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with perfect focus produces some blurring because of 
the diffraction limit of its opening (O’Neill, 1963).

The sampled image is

( ) ( ) ( ), , ,= ⋅p IF x y F x y S x y 				   (1)

where the arrangement of samples is

( , ) ( , )
=− =−

= − ∆ − ∆∑ ∑
J K

j J k K
S x y P x j x y k y 			  (2)

and is comprised of (2J + 1) (2K + 1) identical pulses 
P(x, y) arranged in a grid spacing (dx, dy). Symmetrical 
limits of summation are chosen, for notational simplici-
ty, we assume that the sampling points are scaled.

  ( , ) 1
∞ ∞

−∞ −∞
=∫ ∫ P x y dxdy 			   (3)

For purposes of analysis it is assumed that the sam-
pling function is generated by a finite array of Dirac 
deltas DT(x, y) passing through a linear filter with im-
pulse response P(x, y) then

( , ) ( , ) ( , )= ∗TS x y D x y P x y 			   (4)

 
( , ) ( , )δ

=− =−

= − ∆ − ∆∑ ∑
J K

T
j J k K

D x y x j x y k y 		 (5)

Taking Equations 1 and 2 yields

( )( , ) , ( , )
=− =−

= ∆ ∆ − ∆ − ∆∑ ∑
J K

P I
j J k K

F x y F j x k y P x j x y k y 		  (6)

The spectrum of the sampled image is given by

2

1( , ) ( , ) ( , ) ( , )
4π

   = ∗ ⋅    
P x y x y T x y x yF w w F w w D w w P w w 	 (7)

where P(wx, wy) is the Fourier transform of P(x, y).

The Fourier transform of the truncated sampling arran-
gement (Papoulis, 1966) is

1 1sin sin
2 2( , )

sin .sin
2 2

      + ⋅ ∆ ⋅ + ⋅ ∆      
      =

∆ ∆   ⋅ ⋅   
   

x y

T x y

x y

w j x w k y
D w w

x yw w
	 (8)

This function, evaluated at the limit for large values of J 
and K, is converted into an array of Dirac deltas.

In an image reconstruction system, an image is re-
constructed by interpolation of their samples. The in-
terpolation waveforms selected as Sine function or 
Bessel generally extend over the entire field of the ima-
ge (Pratt, 2001). If the arrangement is a discontinuous 
sampling, the reconstructed image will fail near their 
edges. However, the distance error is negligible in 
about 8 to 10 samples of Nyquist (Abramatic and Fau-
geras, 1982).

Modeling the interpolation system

In modeling the system a test image is taken for ampli-
fication by pulses interpolation. The aim is to achieve a 
new higher resolution image containing the highest fi-
delity with the original image. The process does not 
cause pixels block effect and maintains the continuity 
of phase in the Fourier transform of the result. This 
allows a smooth visual path. It contains the details in 
low-frequency areas and facilitates the compression. A 
convolution kernel (Abramatic and Faugeras, 1978; 
Pratt et al., 1982; Abramatic and Faugeras, 1982) is gene-
rated by the Fourier transform of the truncated sam-
pling arrangement (8).

The space of the band limited functions in the fre-
quency range              is spanned by the infinite (yet 
countable) set of sine functions shifted by integers. 
Thus any such band limited function g(t) can be recons-
tructed from its samples at integer spacing.

[ ],ω π π∈ −

Figure 3.  Scheme of the interpolation function, only one 
coordinate

Figure 2.  Scheme of the physical model scanning an image, 
taken from (Pratt, 2001)
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( ) ( ) sin ( )
=∞

=−∞

= ⋅ −∑
n

n
g t g n c t n 			   (9)

Equations (7) and (9) yield

      (10)

Now consider a spatial linear operator {}O ⋅ that produ-
ces an output image array

( ) ( ){ }1 2 1 2, ,=Q m m O F m m 			   (11)

The term O{δ(t1, t2} for ti = mi – ni + 1 is the response, at 
the output coordinate, to an input of one unit amplitu-
de at coordinate (n1, n2). It is called the impulse response 
function array of the linear operator and is written as

( ){ }1 1 2 2 1 2 1 2( 1, 1; , ) ,δ δ− + − + =m n m n m m O t t   for   1 21 ,≤ ≤t t L

The impulse response array can change form for each 
point (m1, m2) in the processed array Q(m1, m2). Fo-
llowing this notation, the finite area superposition ope-
ration is defined as

( ) ( )
1 2

1 2

1 2 1 2 1 1 2 2 1 2, , ( 1, 1; , )
=∞ =∞

=−∞ =−∞

= ⋅ − + − +∑ ∑
n n

n n
Q m m F n n H m n m n m m 	

		  (12)

This expresses the finite-area superposition operation 
in the left-justified form in which the input and output 
arrays are aligned at their upper left corners. It is often 
notation-wise convenient to utilize a definition in 
which the output array is centered with respect to the 
input array. This definition of centered superposition 
is given by

( ) ( )
1 2

1 2

1 2 1 2 1 1 2 2 1 2, , ( , ; , )
=∞ =∞

=−∞ =−∞

= ⋅ − + − +∑ ∑
n n

c c c
n n

Q j j F n n H j n L j n L j j 	

		  (13)

The limits of the summation are

( 3) / 2 ( 1) / 2− − ≤ ≤ + −iL j L N    and   ( 1) / 2= +cL L           (14)

In Figure 4 the examination of the indices of the impul-
se response array at their extreme positions indicates 
that M = N + L – 1, and hence the processed output array 
Q is of larger dimension than the input array F.

In the interpolation system, the input array F is the 
low resolution image of (Nx, Ny). Then, using (7), (8) and 
(13), the output data array QC(j1, j2) is obtained. Using 
(10), the samples of DT(ωx, ωy) for the interval in which 
ω ∈ [–π, π] are inserted. Figure 3 shows how for ∆x = 1 
and ∆y = 1, Ly = 2 • K and Lx = 2 • J.

 		  	 (15)

'= ⋅ + ⋅x mpL A J inc co 			   (16)

where J’ and K’ are the dimensions of the low resolu-
tion image, this is, the input array F.(24)

( 1) / 2= +cx xL L 				    (17)

 ( 1) / 2= +cy yL L 			   (18)

( ) ( )
'/ 2'/ 2

1 2 1 2 1 2
'/ 2 '/ 2

, , ( , ; , )
ωω

ω ω

ω ω ω ω
==

=− =−

= ⋅ − + − +∑ ∑
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x y

JK

c x y T x cx y cy
K J

Q j j F D j L j L j j 	

	 (19)

Obtaining the impulse response function array in 
function of the exploration parameters inc and co.

'= ⋅ + ⋅y mpL A K inc co

2

1( , ) ( , ) ( , ) ( , )
4π

   = ∗ ⋅    
P x y x y T x y x yG w w G w w D w w P w w

Figure 4.  Relationships between input data, output data, 	
and impulse response arrays for finite-area superposition; 	
centered array definition taken from (Pratt, 2001)
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Evaluating the expression for ωx ∈ [–π, π], ωy ∈ [–π, π] 
and using (19) we obtain the output array Qc(j1, j2), 
which has dimensions (Mx, My), where

= +x x xM N L    and   = +y y yM N L 	 (22)

Then the inverse transformation of the output array gi-
ves the high resolution image

	 (23)( )
/ 2/2

/2 /2
( , ) , exp( ( ))

ωω

ω ω

ω ω ω ω
==

=− =−

= ⋅ +∑ ∑
y yx x

x x y y

MM

S c x y x y
M M

Q x y Q j x y
	

In order to define the parameters inc and co of equa-
tions (15) and (16), the high frequency estimate over 
QS(x, y) is applied. Applying a Butterworth high pass 
filter (Pratt, 2001) to less than 5 pixel elements

(24)

Spatial filters for the edge detection over the high reso-
lution image are used in another case. A Canny type 
filter is applied (Canny, 1986) in order to estimate the 
amount of edge content and to restrict the parameters 
Amp, inc and co of equations (15) and (16). In this case the 
implementation of the Canny operator gives

		  (25)

Then the appropriate values of Ly and Lx can be found in 
both cases by

( ) ( )1 2, , , ,ω ω =Sf x y x y cQ L L Q j j 		  (26)

		  (27)

( ( , ))Sop x yMAX Q L L 				    (28)
	

2 ( , )
0

 ∂
=  ∂ ∂ 

Sop x y

x y

Q L L
L L

			   (29)

Due to the complexity of the formulation, no analytic 
solution has been found, but a variational approach has 
been developed. Defining a fixed value for the large re-
solution modifier Amp = 1.1, the maximum responses of 
high frequencies are found by the output of the filter 
only for some combination values of the scan parame-
ters inc and co. The high frequencies response of the 
high resolution image using the Butterworth filter of 
the equation (20) is shown in Figure 5.

Figures 6 or 8 show how a periodicity exists in each 
row; for example, if inc = 0.4 the best result appears 
every 5 figures and the resolution of the output image 
increases according to equation (22). For a good result, 
if inc = 0.4 then co = co0 + n • 5 when co0 = 4, equations (15) 
and (16) get the exact dimensions. But the best result for 
the Butterworth guide comes from Table 1, co = 19, inc = 
0.4 where this pattern combination gives us the maxim 
conservation value of the frequency range of the filter 
(Figure 9).
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Figure 5.  Graphic parameters scan for the output of the filter type ‘ Butterworth ‘ (Pratt, 2001), order 5 for 	
less than 5 pixel elements, increment (inc) differentiated per colors and sample number (co) identify the number 	
of measurements taken for each increment

Table 1.  High frequency magnitudes after the adjustment process of the amplification kernel. 	
Sum of units of least energy change per pixel result of the high pass filter type Butterworth 	
(Pratt, 2001), order 5 for less than 5 pixel elements

co inc=0.1 inc=0.2 inc=0.3 inc=0.4 inc=0.5

 1 383928567,687645 270095037,508266 169198039,912090 102292472,923475 125127676,957232

 2 265336827,105852 94633549,2094335 129772765,750036 90655325,4611820 270138137,174281

 3 157399882,781851 126253386,468731 162435251,425276 502431645,964924 802194399,470288

 4 78063421,3240791 86932171,0105289 502020648,615752 829747255,982912 514671554,508373

 5 105195160,856602 265515683,841707 798848643,137986 513236839,238852 123753730,390564

 6 115601427,542619 501701038,483607 733999530,952639 99774761,6931317 269928660,113030

 7 100589995,469657 725245838,189243 390671166,003094 90410729,5035506 809589665,431580

 8 71483800,9070080 827297391,509886 95648619,2983738 507855576,795838 518622467,896560

 9 152354026,996521 734377407,381142 113652216,857252 836032023,851749 123233632,319536

10 260325092,865537 509908457,350087 268612928,958653 516477468,586911 273207463,923044

11 379071451,392629 268192909,414039 628325957,888577 96690369,9074624 815764892,457752

12 500332472,602403 78953076,5124871 836469798,355744 88809521,0980179 521890543,565737

13 622010395,730627 116933760,026838 636913647,263801 513320418,457530 120472385,889034

14 727068317,400424 72255954,4438813 271311592,423545 845105285,844718 274630252,046820

15 802300090,381683 263321971,361200 107661335,427739 521099266,043549 824783465,459286

16 830828568,075156 506052996,661072 73031823,6914790 80953870,6143567 526345829,248504

17 807684329,368176 735114700,534598 387577748,801602 73733511,8314926 110166690,342695

18 734377407,381142 839728077,836381 743205085,474997 517243362,064077 271945387,044346

19 629973217,428392 742412308,021623 824984133,789389 856772169,300154 836016262,233911

20 383928567,687645 270095037,508266 169198039,912090 102292472,923475 125127676,957232
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1618 1.1 182 4
0.4

5

− ⋅
−

=n , n = 708.1 and co = 708.1•5 + 4

Figures 7 and 10 show how a loss of the high frequency 
content occurs. The application of the interpolation ker-
nel with the Butterworth filter guide produces this 
effect. This filter does not give the maximum values of 
frequency of contour information. 

The Canny method finds edges by looking for the 
local maximum of the image gradient. The gradient is 
calculated using the derivative of a Gaussian filter. The 
method uses two thresholds to detect strong and weak 
edges, and includes the weak edges in the output only 
if they are connected to strong edges. This method is 
therefore less likely than the others to be deceived by 
noise, and more likely to detect true weak edges.

					                    (30)
	

The classical separable sine impulse response function 
array (Pratt, 2001) is

Compare, in Figure 13, the results of the sine separa-
ble interpolation (30) and the application of the impulse 
response function array (20) restricted by the Canny fil-
ter over the first column of the high resolution image.
Figure 11 shows the periodicity and the peaks useful 
for the amplification. The map of figure 12 has localized 
a zone where exist a maximum value obtained from the 
Table 2, with co = 10 and inc = 0.5. Figure 14 shows how 
the high resolution image maintains the original con-
trast. This figure has better conserved contour informa-
tion than the one obtained with the classic interpolation 
using the impulse response function array (30).

50 100 150 200 250 300 350 400 450

50

100
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300

350

Figure 6.  Map of parameter selection for high frequency levels of high pass filter type Butterworth 	
(Pratt, 2001) order 5 for less than 5 pixel elements over the results of the interpolation filter

Figure 7.  High resolution image whit co = 19 	
and inc = 0.4, and the guide of Butterworth (Pratt, 2001), 
order 5 for less than 5 pixel elements
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In Figure 15, an integer number multiplier is used in 
order to construct a more dense mesh of the interpola-
tion kernel (20). The parameters in Table 2 for the maxi-
mum high frequency response in the high resolution 
image are used.

In the case of Figure 15, from equation (15)

13 (1.1 ' 0.5 10)= ⋅ ⋅ + ⋅xL J

And from equation (16)

13 (1.1 ' 0.5 10)= ⋅ ⋅ + ⋅yL K

Discussion and analysis of results

The investigation shows the main aspects of the inter-
polation with restriction for the amplification. For ins-
tance, which is the goal in the amplification process? 
What filter could be the guide for the parameters in the 
construction of the response impulse function or ampli-
fication kernel? The Butterworth filter takes in conside-
ration a range of high frequencies, in the case for 
Dx = 5 pixels, but the main trouble in the interpolation is 
the contour conservation or high frequencies, that are 
just over p. The results of amplification guide by But-
terworth give possible combination of parameters for 
equations (15) and (16) in a range of frequencies. In or-
der to have better results it is necessary to use a filter 
directly related with the contour information of the 
image. The edge detectors are developed with a robust 
capacity for the detection. One famous detector is the 
Canny filter (Canny, 1986).Then the high frequencies of 
the interpolation output are related to the impulse res-
ponse function array using the Canny filter. We found 
the adequate parameters inc and co in order to make the 
interpolation kernel, increase the high frequency con-
tent in the high resolution image.

Other aspect is the control of the coordinates of am-
plification of the filter. It is shown in Figures 6 or 8 how 
periodicities exist in each inc row. The argument of the 
sine components of the impulse response function 
array in function (20) are near p/2 with the exploration 
parameters inc = 0.4 and co = co0 + n • 5 for the contour 
interpolation.The amplification suited under this con-
dition takes the dimensions desired using (15) and (16). 
Figure 10 is an exact amplification to the precise coordi-
nates. But this process gives losses with the guide of the 
Butterworth filter. When controlling the amplification it 
is preferable, for the conservation of high frequency 
content in the high resolution plane, to find a local 
maximum using the Canny filter. A whole number is 
used as multiplier to increase the interpolation kernel 
dimensions. Another important topic is the comparison 
applying the classical separable sine impulse response 
function array (30) and the interpolation results with 
the impulse response function array (20) constrained by 
the neighbor detector filter Canny type. It is shown 
how the restriction increases the range of the pixels va-
lues doing a contribution to the high frequency conser-
vation in the high resolution plane. In the last case it is 
analyzed how the guide of Canny is useful to construct 
an interpolation kernel in order to obtain a very high 
resolution image taking only maximum local values in 
a range. The parameters, when the high frequency con-
tent increases, represent the adequate amount of sam-
pler components in the impulse response array S(x, y) 
of equation (1) for the interpolation. The sampler com-
ponents are more numerous than the samples of the 
original image for the interpolation, but the position of 
these are in the active zone of the resolution cell of the 
physical scan model and consequently over the valid 
values of the pixels in the original image and not bet-
ween. Then the interpolation kernel increases by a 
whole number multiplier for the adequate parameters 
Amp, inc and co giving a high frequency maximum in an 

Figure 8.  Map of high resolution images 
obtained by the interpolation kernel varying 
parameters
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Figure 9.  The original test image has 226 × 182 pixels Figure 10.  High resolution image using the periodic pattern of 
Figure 8 for the parameters calculation in a specific amplification 
from 182 × 226 to 1800 × 2235 pixels

Figure 11.  Graphic parameters scan for 
the output of Canny filter (Canny, 1986) 
increment (inc) differentiated by colors 
and sample number (co) identify the 
number of measurements taken for each 
increment

Table 2.  High frequency magnitudes after the adjustment process of the amplification kernel. 	
Sum of units of least energy change per pixel resulting from high pass filter type ‘Canny’ (Canny, 1986)

co inc=0.1 inc=0.2 inc=0.3 inc=0.4 inc=0.5
  1 12065 12636 11335   1002 11687
  2 12561    946 13084   1382 12864
  3 11091 12901 11861 12466 12273
  4     948 1168 12206 12320 12421
  5 11267 12635 12138 12421 11479
  6 11728 12226 11924     918 12766
  7 11908 11766 12267 1166 12255
  8   1058 12127     943 12445 12438
  9 11784 11856 12163 12323 11541
10 12414 12225 12654 12416 12871
11 11984 12610 12124     971 12314
12 12097    930 12208 1147 12457
13 11986 12871 12232 12511 11578
14 11720 1057 12594 12350 12824
15 12017 12603 11376 12425 12402
16 12074 12130   1076     925 12422
17 11949 11729 12186   1063 11608
18 11856 12103 11816 12252 12852
19 12171 11836 12178 12354 12273
20 12225 12266 12425 12422 12428
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Figure 13.  Comparison of the sine 
separable interpolation (30) and the 
application of the impulse response 
function array (20) restricted by the 
Canny filter over the first column of the 
high resolution image with 	
Amp = 1.1, inc = 0.5 and co = 18

Figure 14.  High resolution image for co = 10 and inc = 0.5, oriented 
by ‘Canny’ filter (Canny, 1986)

Figure 12.  Map of parameters selection 
for high frequency levels of high pass filter 
type ‘Canny’ (Canny, 1986) applied over 
the results of the interpolation filter
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initial range. Using this mode we obtained a very high 
resolution image. The high frequency content in the 
high resolution plane was retained. Figure 15 shows 
how this effect occurs over an amplification of the 
1550% in each coordinate.

Conclusions

This paper shows an effective way for optimizing a pul-
se interpolation filter in order to obtain the best visual 
result for the required amplification rate. The proposed 
amplification method retains the high frequency con-
tent and does not produce pixels block effect. A new 
way of relationship between the constructions of the 
interpolation kernel and the guide of classic filters is 
shown in order to increase the high frequency content 
in the high resolution image. The restriction of the in-
terpolation process using high pass filters increases the 
range of the pixels values doing a contribution to the 
high frequency conservation in the high resolution pla-
ne. A Canny detector is more effective than the But-
terworth high pass filter for the high frequency 
conservation in the amplification. The characterization 
of the filter is necessary for the efficient application in 

different processes of restoration and reconstruction, 
preserving the characteristics of the primary image. 
The proposed method makes adequate amplification 
filters for specific purposes in the field of digital photo 
restoration and image and video compression.
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