
Ingeniería Investigación y Tecnología, volumen XVII (número 2), abril-junio 2016: 191-200

ISSN 1405-7743 FI-UNAM

(artículo arbitrado)

Keywords: 

•	 parallel manipulator
•	 klein form
•	 screw theory
•	 kinematics

Information on the article: received: June 2014, accepted: October 2015

Kinematics of a Class of Three-Legged Parallel Manipulators by Means 
of Screw Theory

Cinemática de una clase de manipuladores paralelos compuestos de tres 
extremidades por medio de la teoría de tornillos

Gallardo-Alvarado Jaime 
Department of Mechanical Engineering
Instituto Tecnológico de Celaya, TNM

E-mail: jaime.gallardo@itcelaya.edu.mx

Abstract

This work is devoted to the velocity and acceleration analyses of a class of 
three-legged parallel manipulators. The input-output equations of velocity 
and acceleration are systematically obtained by resorting to reciprocal-screw 
theory. With the purpose to exemplify the application of the method, a case 
study is included. The example consists of solving the kinematics of a 3-CRS 
(Cylindrical + Revolute + Spherical) parallel manipulator. Furthermore, the 
numerical results obtained via screw theory are verified with the aid of com-
mercially available software.

Resumen

Este trabajo se dedica a los análisis de velocidad y aceleración de una clase de ma-
nipuladores paralelos compuestos de tres extremidades. Las ecuaciones entrada-sa- 
lida de velocidad y aceleración se obtienen sistemáticamente recurriendo a la teoría 
de tornillos recíprocos. Con el propósito de ejemplificar la aplicación del método, se 
incluye un caso de estudio. El ejemplo consiste en resolver la cinemática de un ma-
nipulador paralelo tipo 3-CRS (Cilíndrico + Revoluta + Esférico). Más aún, los 
resultados numéricos obtenidos vía teoría de tornillos se verifican con la ayuda de 
software comercial. 

Descriptores: 

•	 manipulador paralelo
•	 forma de Klein
•	 teoría de tornillos
•	 cinemática
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Introduction

Manipulators may be classified as serial, parallel or a 
combination of both, named hybrid mechanisms. A ty-
pical serial manipulator consists of an end-effector con-
nected to the base link by means of a single kinematic 
chain, in which all the kinematic pairs play the role of 
active or motive joints. On the other hand, a typical pa-
rallel manipulator consists of an end-effector, namely 
the moving platform, connected to the base link, na-
mely the fixed platform, by means of at least two kine-
matic chains or limbs. The presence of passive kinematic 
joints is a characteristic of parallel manipulators.

Without doubt, the most popular type of parallel 
manipulator is the so called Gough-Stewart platform. 
This non-redundant in-parallel manipulator consists of 
a moving platform and a fixed platform connected to 
each other by means of six extendible limbs or rods, 
where each limb is actuated independently providing 
six degrees of freedom to the moving platform. The pa-
rallel kinematic device is attributed to Gough (Gough 
1957; Gough and Whitehall, 1962) and, incorrectly, to 
Stewart (1965). These seminal contributions, a universal 
tire testing machine and a fly simulator, respectively, 
date back to the 1950s. Despite the indisputable and ap-
preciable benefits of a Gough-Stewart platform such as 
rigidity and accuracy, one of its main drawbacks, due 
to the coupled kinematics over the moving platform, is 
the hazardous task for computing the forward position 
analysis. In fact, as it is reported by Raghavan (1993), 
the moving platform can reach up to forty locations 
when a set of generalized coordinates is given. The pro-
blem has been exhaustively addressed, see for instance 
(Innocenti and Parenti, 1990; Wen and Liang, 1994; In-
nocenti 1995; Husty 1996;  Innocenti 1998), providing 
excellent partial solutions. However, still in our days a 
closed-form solution for the forward position analysis 
seems to be an unrealistic task. Furthermore, limited 
workspace and a recurrent problem of singular confi-
gurations are the main drawbacks of most parallel ma-
nipulators. Recently, several robots for industrial 
purposes have been constructed based on the Gough-
Stewart topology: Octahedral Hexapod HOH-600 (In-
gersoll), HEXAPODE CMW 300 (CMW), Cosmo Center 
PM-600 (Okuma), F-200i (FANUC) and so far. These 
products exhibit an excellent performance, however 
one cannot ignore that this kind of parallel kinematic 
structures have a limited and complex-shaped work-
space. Furthermore, their rotation and position capabi-
lities are highly coupled and therefore the control and 
calibration of it are rather complicated demanding the 
implementation of sensors.

An option to overcome the limitations of Gough-
Stewart platforms is the development of parallel mani-
pulators with fewer than six limbs, preserving of course 
the six degrees of freedom. In this work the velocity 
and acceleration analyses, of a class of three-legged pa-
rallel manipulators are investigated by means of the 
theory of screws. The study is available for a wide ran-
ge of parallel manipulators. 

Description of the class of parallel manipulators 
under study

It is known that the pose, position and orientation, of 
rigid body may be determined by knowing the position 
of three non-collinear points embedded to it (Merlet, 
2004; Gallardo, 2014). Furthermore, it is straightforward 
to demonstrate that a minimum number of limbs may 
avoid the possibility of physical interference between 
the limbs, increasing the workspace of parallel manipu-
lators. Thus the parallel manipulators considered in 
this study have the following features:

•	 The moving platform is connected to the fixed plat-
form by means of three limbs.

•	 In order to simplify the mechanical assembly, avoi-
ding additional conditions of manufacture, the mo-
ving platform is connected to the limbs by means of 
three spherical joints shaping an equilateral trian-
gle.

•	 The limbs are connected to the fixed platform by 
means of revolute, cylindrical or prismatic joints.

•	 Overall, the parallel manipulators considered in the 
study are of the class 3-XYS, where {X, Y} ∈ {R, C, P} 
while S is a spherical joint where C, R, P and S stand 
for Cylindrical, Revolute, Prismatic and Spherical 
joint, respectively.

Some parallel manipulators meeting the characteristics 
above listed are the following: 3-RRS, 3-RPS, 3-CRS, 
3-CPS, 3-RRRPS and 3-RRPS. Note that limited a non-
redundant parallel manipulators are considered in the 
contribution. 

Preliminary screw theory

As a consideration for readers unfamiliar with the theory 
of screws, this section is devoted to review some elemen-
tary concepts of it. 

In Plücker coordinates a screw, notated as $, is a six-
dimensional vector given by $ = (s, sO), where s is na-
med the primal of the screw, P ($) = s, and denotes the 
direction of the line. Usually the primal part is a unit 
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vector of course alone the instantaneous screw axis 
(ISA). While sO is named the dual part of the screw,  
D ($) = sO , and it is the moment produced by vector  
around the reference pole O. The vector sO is calculated 
as follows

sO = hs + s  r                                                                                                                   (1)

Therein h is the pitch of the screw while r is a vector 
directed from an arbitrary point of the ISA to the refe-
rence pole O. Conveniently, the reference pole is cho-
sen as the origin of the reference frame in order to 
simplify the Plücker coordinates. In a revolute joint 
the pitch h vanishes yielding $ = (s, s  r), while in a 
prismatic joint the pitch goes to infinity yielding  
$ = (0, s). Furthermore, any lower kinematic pair may 
be modeled combining revolute and/or prismatic 
joints, e.g. a spherical joint may be modeled as three 
concurrent revolute joints while a cylindrical joint is 
modeled as the combination of one prismatic joint 
with one revolute joint.

The Lie algebra se(3) of the Euclidean group SE(3) is 
the set of elements of the form ($) = (s, sO). Let $1 = (s1, 
sO1), $2 = (s2, sO2) and $3 = (s3, sO3) be three elements of the 
Lie algebra se(3). Furthermore, consider that m1, m2, m3 ∈ 
R. Concerned with the contribution, the Lie algebra 
supports the following operations:

Addition, $1 + $2 = (s1  + s2, sO1+sO2)
Multiplication by one scalar, μ$ = (μs,μsO)
Lie product, [$1 $2] = (s1 × s2, s1×sO2 – s2 × sO1)
Furthermore, the Lie product has the following pro- 

      perties
Nilpotent,  [$1 $2] = 0
Distributive, [$1  μ2 $2 + μ3 $3] = μ2 [$1  $2] + μ3 [$1 $3]
[μ1 $1 + μ2 $2  $3] = μ1 [$1  $3] + μ2 [$2 $3]
Jacobi identity, [$1 [ $2 $3]] +
[$3 [ $1 $2]] + [$2 [ $3 $1]] = 0

On the other hand the Lie alge-
bra is endowed with two bilinear 
symmetric forms: the Klein form, 
notated as {*;*}, and the Killing 
form, notated as 〈*;*〉. The first one is 
defined as follows

{$1;  $2} = s1  . sO2 + s2 . sO1                               (2)

therein the dot (.) denotes the inner 
product of three-dimensional vecto-
rial algebra. While the second one is 
defined as follows

〈$1;  $2〉 = s1  . s2                                                                                                                  (3)

The representation of the kinematic states of a rigid 
body, as observed from another body or reference frame, 
has been a topic that has attracted the attention of kine-
maticians since many years ago. In fact, it dates back to 
the pioneering contribution of Ball (1900). The velocity 
state, or twist about a screw, of rigid body was defined 
by Ball (1900) as a six-dimensional vector given by 

                                                                                                                            (4)

where w is the angular velocity vector of the body whi-
le vO is the linear velocity vector of a point O embedded 
to it. Almost four decades after the contribution of Ball, 
one representation of the acceleration state of rigid 
body, the logic next step, was proposed by Brand (1947) 
as follows

                                                                                                      (5)

where α denotes the angular acceleration of the vector 
while aO denotes the linear acceleration vector of point O. 

It is interesting to note that the primal part of the 
acceleration state is obtained directly as the time deri-
vative of the primal part of the velocity state, i.e.

                                                                                            (6)

Thus, at this moment a natural question arises, why 
don’t occur the same for the dual part of the accelera-
tion state? In other words, why D(AO) = aO – w  vO  ≠ d 
(D (VO)) / dt? The answer to this query can be found in 
the heart of the theory of helicoidal vector fields, for de-
tails the reader is referred to Gallardo et al. (2008). 
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Figure 1. Serial kinematic chain



Kinematics of a Class of Three-Legged Parallel Manipulators by Means of Screw Theory

Ingeniería Investigación y Tecnología, volumen XVII (número 2), abril-junio 2016: 191-200 ISSN 1405-7743 FI-UNAM194

Consider an open kinematic chain as shown in Figu-
re 1, where adjacent bodies are connected by means of 
infinitesimal screws also known as helical pairs. The 
velocity state of the end-effector m as measured from 
the base link j may be expressed in screw form, see for 
instance Sugimoto and Duffy (1982), as a linear combi-
nation of the involved screws as follows

jV m =                                                                                                   (7)

where kwk + 1 denotes the k-th joint-rate velocity between 
adjacent bodies k and k + 1. By the time, the usefulness of 
Eq. (5) in robot kinematics was immediately recognized 
by engineers and scientists; however its extension to the 
acceleration analysis remained as an open problem for 
more than one decade. Certainly, the difficulty to ex-
press in screw form the acceleration state of kinematic 
chains was considered as one of the main drawbacks of 
the theory of screws. It was in 1996 when Rico and Duffy 
(1996) introduced the following equation

jAm =                                                                                    (8)

where              denotes the joint-rate acceleration between 

adjacent bodies, i.e.                                   , while L named  

the Lie screw of acceleration and it is calculated accor-
ding to the joint-rate velocities of the serial chain as 
follows

L = [jwj+1 
j$ j+1   

j+1wj+2 
j+1$ j+2 + ... + m–1wm

  m–1$ m] +	 (9)

[m–2wm–1 
m–2$ m–1   m–1wm m–1$ m]                                                                 

     
A closed kinematic chain may be considered as a serial 
manipulator where bodies m and j are joined forming 
thefixed platform, i.e. m = j. On the other hand, for cla-
rity, unlike the equation of velocity state in screw-form, 
in the contribution the six-dimensional vector L is writ-
ten explicitly. Equation (8) was named by Rico and 
Duffy (1996) as the reduced acceleration state. 

Velocity analysis

The benefits of using screw theory in analyzing the infi-
nitesimal kinematics of parallel manipulators are indis-
putable; see for instance (Rico and Duffy, 1996, 2000; 
Gallardo et al., 2003). In this subsection the velocity 
analysis of the family of parallel manipulators under 
study is carried-out by means of the theory of screws. 
To this end, the modeling of the screws of some parallel 
manipulators is depicted in Figure 2. It is important to 
mention that in the case of parallel manipulators with 
fewer than six degrees of freedom, in order to satisfy 
the dimension of the space spanned by the infinitesimal 
screws, it is necessary the introduction of virtual or fic-
titious screws into the mechanism. They are indicated 
with upper asterisks in Figure 2. 
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Figure 2. Typical three-legged parallel manipulators
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ˆˆ jι,

The velocity state of the moving platform, with respect 
to the fixed platform, may be written trough any of the   
i – th connector limbs, unless otherwise i = 1, 2, 3 in the 
rest of the contribution, of the parallel manipulator in 
screw form as follows

                                          (10)

where the joint-rate velocity         is chosen as the i – th 
generalized speed. Naturally concerned with six-de-
grees-of-freedom parallel manipulators, e.g. the 3CPS 
robot, the designer must choose the complementary ge-
neralized speeds. Furthermore, note that the screws     
      and      are reciprocal to all the screws associated to 
passive joint rates in the same limb. Resorting to the 
Klein form, after a lengthy procedure the general input-
output equation of velocity may be written as

                                                                                                                    (11)

where, as previously defined, 0 V 6 = (w, v) while Ā is 
named the first-order coefficients matrix of the manipu-
lator which is computed according to the Jacobian ma-
trix J =                                        and an operator of po- 
 
larity                         as follows 

                                                                                                                            (12)

Furthermore, 

is a diagonal matrix named the first-order driver matrix 
of the manipulator. 
The inverse velocity analysis consists of finding the ge-
neralized speeds given the velocity state 0 V 6. On the 
other hand, the forward velocity analysis consists of 
computing the velocity state 0 V 6 given a set of genera-
lized speeds.

Acceleration analysis

The reduced acceleration state of the moving platform 
as measured from the fixed platform, the six-dimensio-
nal vector 0 A 6 may be written in screw form through 
the connector limbs as follows

                                       	 (13)

where in order to compute the Lie screws of accelera-
tion Li, see Eq. (9), the joint-rate velocities may be com-
puted upon Eq. (10).

Following the trend of the velocity analysis, by resor-
ting to reciprocal-screw theory the input-output equa-
tion of acceleration of the manipulator results in 

                                                                                                                      (14)

where, as previously defined, 0A6 = (a; a – w  v) while   

is a diagonal matrix named the second-order driver 
matrix of the manipulator. It is important to note that 
such matrix contains the Coriolis acceleration terms.

The inverse acceleration analysis consists of finding 
the generalized accelerations given the reduced accele-
ration state while the forward acceleration analysis con-
sists of computing the reduced acceleration based on a 
set of generalized accelerations.

Case study: 3-CRS parallel manipulator

In this section in order to show the application of the 
method, the velocity and acceleration analyses of a six-
degrees-of-freedom parallel manipulator are reported. 

The parallel manipulator at hand consists of a mo-
ving platform and a fixed platform connected to each 
other by means of three CRS-type limbs. In order to sa-
tisfy the six freedoms of the manipulator, the translatio-
nal motions of the cylindrical joints and the revolute 
joints connecting the lower and upper links of the limbs 
are chosen as the six generalized coordinates of the me-
chanism (Figure 3), i.e.               and                .  
    Using SI units thorough the numerical example, the 
spherical joints shape an equilateral triangle of side  
r = 0.5  while the axes      of the cylindrical joints, expres-
sed in the fixed reference frame XYZ, are given by                     
 where       
and    denote unit vectors associated to the X, Y       
Z axes. On the other hand, the generalized coordinates 
are commanded to follow periodical functions given by 
q1 = 0.125sin (t), q2 = 0.2sin (t), q3 = 0.25sin2 (t), Q1 = 0.65sin 
(t) + 1.047, Q2 = 0.5236sin (t) + 0.35, Q3 = 0.5236sin  
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Figure 3. 3-CRS parallel manipulator
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(t) + 1.047 in the interval of time 0 ≤ t ≤ 2p, whereas in 
the reference configuration of the robot the nominal po-
sitions of the cylindrical joints, points notated as c1, are 
chosen as c1 = (0.5, 0, 0), c2 =(0.75, 0, – 0.433) and c3 = (0.25, 
0, – 0.433). This implies that the instantaneous positions 
of the cylindrical joints are given by Ci  = qi     + ci which 
are located by vectors       . With these data it is required 
to compute the instantaneous velocity and acceleration 
of the center of the moving platform.

For the sake of completeness and as a necessary step 
to solve the infinitesimal kinematics in what follows the 
displacement analysis of the robot manipulator is pre-
sented. The forward displacement analysis consists of 
finding the coordinates of points Si = (Xi, Yi, Zi), located 
by vectors     , given the six generalized coordinates q1  
and Q1. According to the distance di it is possible to wri-
te three closure equations as follows

                                                                                                 (15)

where                                                        . Furthermore three 
compatibility equations may be written based on the 
spherical joints as

                                                                                                 (16) 

On the other hand, the cylindrical joints constrain the 
motions of the spherical joints in such a way that

                                                                                                             (17) 

Equations (15)-(17) form a system of three linear and six 
non-linear equations in the nine unknowns Xi, Yi and Zi 
which is solved applying the Sylvester dialytic method 
of elimination, for details the reader is referred to Ga-
llardo et al. (2008).  At the time t = 0 one of the sixteen 
solutions obtained for the forward position analysis in-
dicates that the coordinates of the centers of the spheri-
cal joints are given by S1 = (0.5, 1, 0), S2 = (0.6826, 1.2475, 
– 0.3941) and S3 = (0.25, 1, – 0.433). This solution is selec-
ted as the home position (reference configuration) of 
the parallel manipulator. After, according to Eq. (11) 
the velocity state of the moving platform is obtained as

                                                                                                         (18)

where the first-order driver matrix of the mechanism is 
computed as

                                                                                                    (19)

Thus the angular velocity vector of the moving plat-
form is obtained as the primal part of the velocity state 
           while the velocity of the center of the moving plat-
form is obtained as the dual part of the velocity state. It 
should be noted that the Plücker coordinates of the infi-
nitesimal screws are computed considering the center 
of the moving platform as the reference pole. On the 
other hand, the reduced acceleration state of the mo-
ving platform, see Eq. (14), is found as

                                                                                                         (20)

where the second-order driver matrix of the manipula-
tor is given by

                                                                                               (21)

Hence, the angular acceleration of the moving platform 
is computed as the primal part of the six-dimensional 
vector         . Furthermore, in order to compute the acce-
leration of the center of the moving platform consider 
that knowing the dual part of the reduced acceleration 
state it follows that

                                                                                                  (22)

The formulae reported for the velocity and acceleration 
analyses were translated into a Maple8© sheet. Rele-
vant procedures of the Maple sheet are as follows:
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Let us consider that j and m are two in general no adja-
cent bodies of a serial kinematic chain, see Figure 1. The 
procedure jVm allows to compute the velocity state of 
m with respect to j whereas the procedure jLAm is de-
voted to compute the corresponding Lie screw of acce-
leration. Meanwhile, the procedure jAm is employed to 
compute the reduced acceleration state of m as obser-
ved from j. Finally, Lie and Klein are procedures to 
compute, respectively, the Lie product and the Klein 
form of two six-dimensional vectors. 

The numerical results obtained by means of the 
theory of screws were verified with the aid of commer-

cially available software like ADAMS©. The virtual 
prototype is shown in Figure 4. On the other hand, for 
clarity, the plots generated using both strategies are 
presented in Figure 5. In that concern, in order to avoid 
redundant notation, the labels of the right plots of Figu-
re 5 were removed.

Finally, it is worth to note that the numerical re-
sults obtained via screw theory are in excellent agree-
ment with those generated using another approach 
such is the software ADAMS©, e.g., the corresponding 
plots matches exactly the same values when them are 
superposed.

> jVm:=proc(j,m,leg): 
> evalm(add(evalm(omega[i,i+1,leg]*Scr[i,i+1,leg]),i = j .. m-1)):
> end:
> 
> jLAm:=proc(j,m,leg): 
> evalm(add(Lie(evalm(omega[i,i+1,leg]*Scr[i,i+1,leg]),jVm(i+1,m,leg)),i = j .. m-2)):
> end:
> 
> jAm:=proc(j,m,leg): 
> evalm(add(evalm(alpha[i,i+1,leg]*Scr[i,i+1,leg]),i = j .. m-1)+jLAm(j,m,leg)):
> end:
> 
> Lie:=proc(SS1,SS2) local S1,S2,PrS1,PrS2,DuS1,DuS2,primal,dual; 
> S1:=convert(SS1,vector):S2:=convert(SS2,vector): 
>PrS1:=vector(3,[S1[1],S1[2],S1[3]]);DuS1:=vector(3,[S1[4],S1[5],S1[6]]);
>PrS2:=vector(3,[S2[1],S2[2],S2[3]]);DuS2:=vector(3,[S2[4],S2[5],S2[6]]); 
> primal:=crossprod(PrS1,PrS2);dual:=evalm(crossprod(PrS1,DuS2)-crossprod(PrS2,D
uS1));
> vector(6,[primal[1],primal[2],primal[3],dual[1],dual[2],dual[3]]);
> end:
> 
> Klein:=proc(V1,V2):
>V1[1]*V2[4]+V1[2]*V2[5]+V1[3]*V2[6]+V2[1]*V1[4]+V2[2]*V1[5]+V2[3]*V1[6]:
> end:

Figure 4. A virtual prototype realized with ADAMS©
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Figure 5. Time history of the velocity and acceleration of the moving platform using screw theory (left plots), using ADAMS© (right plots)
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Conclusions

In this contribution the velocity and acceleration analy-
ses of a family of three-legged parallel manipulators are 
investigated by means of the theory of screws. The ve-
locity and acceleration analyses are approached using 
the theory of screws. The input-output equations of ve-
locity and acceleration are systematically obtained by 
taking advantage of the Klein form of the Lie algebra 
se(3) of the Euclidean group SE(3). The concept of reci-
procal screws plays a central role. In that regard, it is 
worth to note that concerned with the acceleration 
analysis the method does not require the computation 
of the passive joint-acceleration rates of the manipula-
tor. The methodology of analysis is available for any 
three-legged parallel manipulator. In order to illustrate 
the potential of the methodology of analysis considered 
here, the infinitesimal kinematics of a 3-CRS parallel 
manipulator is solved with the aid of computer codes. 
Finally, the numerical results generated for the moving 
platform using the theory of screws, are compared with 
numerical results produced with special software of si-
mulation like ADAMS©.
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