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Escalamiento multifractal en epidemias

Abstract | In this work we study multifractal properties of the transmission dynamics of
childhood epidemics. As a case study, the rubella epidemic in Mexico is analyzed.
Keywords | epidemics, multifractional models, rubella, scaling, wavelets.

Resumen | En este trabajo se estudian propiedades multifractales de los procesos de trans-
misiéon de epidemias. Como caso de estudio, se analizan la epidemia de rubéola en México.
Palabras clave | modelos epidemioldgicos, multifractales, rubéola.

Introduction

THE REALIZATION that most biological phenomena are nonlinear systems occur-
ring at different scales has represented a major scientific shift in all areas of bi-
ology. Most of these advances have occurred in the last 30 years thanks to new
mathematical approaches and the development of large data sets readily acces-
sible from internet. A nonlinear system is one that does not satisfy the superpo-
sition principle (f(x + y) = f(x) + f(y)), or one whose output is not directly pro-
portional to its input, or one in which the sum of its parts is greater (or lesser)
than the whole.

Most time we must deal with distributions of measures which are both smooth
and well-behaved. In these cases, the distributions are described by well-known
functions, they are differentiable, integrable, and continuous everywhere, except
in an enumerable number of points. However, some time, nature shows up with
quantities which cannot be described by smooth nor well behaved functions in-
stead. These quantities, or measures, are, in general, distributed in a complex
singular way (Mandelbrot 1998). Singular distributions of physical and biological
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quantities may determine an infinite set of fractal dimensions each correspond-
ing to the distribution of a given kind of singularity of the measure. In this case,
not one but an infinity number of exponents are needed to describe each singu-
larity, these exponents form a spectrum which is called the multifractal spec-
trum. These quantities are called multifractals if the multifractal spectrum is non-
trivial. Fractal curves are known to be scale invariant, which means that the
statistical properties of the signal remain invariant under scale transformations
(Mandelbrot 1998). In view of the heterogeneous (patchy) nature of the incidence
time series of various childhood epidemics, we contend in this paper that a single
exponent is not sufficient to characterize the complexity of epidemic dynamics,
and that a multifractal approach may be necessary. In this work, we offer one ex-
ample of how we can extract information about the scaling properties and the
nonlinear character of a biological signal. We are interested in demonstrating that
rubella epidemics follow a nonlinear dynamic and are more than a monofractal.
To test the hypothesis that more than one scaling exponent are required to char-
acterize epidemic dynamics, a continuous wavelet transform (CWT) and a multi-
fractal analysis of the time series of rubella epidemics are performed. The article
is organized as follows. First, we describe the biological signal followed by the
mathematical background that will be used to analyze it. The main goal is to re-
veal hidden patterns from the observed dynamics of the monthly incidence of
rubella in Mexico. By hidden patterns, we mean information that is neither visu-
ally apparent nor extractable with conventional methods of analysis. Such con-
ventional techniques include the tacit assumption of a linear system or stationar-
ity, estimation of means, standard deviation and other features of histograms.

Rubella epidemics

The monthly incidence of rubella in Mexico is shown in figure 1. The character-
ization of the rubella epidemics in Mexico can be found elsewhere (José et
al.,1992). Note that there is an oscillatory behavior with seasonal annual cycles
like several infectious diseases like influenza, measles, mumps, chickenpox
(varicella), and poliomyelitis. It is also clear that the magnitude of the epidemic
cycle of 1999 is the greatest. The main goal of vaccination against rubella infec-
tion is to prevent congenital rubella. After the year 2000, the rubella infection
in Mexico started to decline until its virtually elimination around 2006. This
success was mainly achieved be increasing the coverage of vaccination of young
girls and boys. There are several cycles embedded in this time series. In partic-
ular, there is an inter-epidemic period every 4 years as observed by calculating
the Fourier transform (not shown), which is not apparent by a simple visual in-
spection of the time series.
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Wavelet transform

Unlike Fourier, wavelet transform (WT) is usually devoted to the analysis of
non-stationary and nonlinear signals. Traditional approaches (such as the power
spectrum and correlation analysis) are not suited for such non-stationary sequenc-
es, nor do they carry information stored in the Fourier phases which is crucial for
determining nonlinear characteristics. Thus, there is no prerequisite over the sta-
bility of the frequency content along the signal analyzed. Conversely to Fourier,
WT allows one to follow the temporal evolution of the spectrum of the frequencies
contained in the signal. The shape of the WT-analyzing wavelet equation differs
from the fixed sinusoidal shape of the Fourier transform and can be designed to
better fit the shape of the analyzed signal, allowing a better quantitative measure-
ment. Like Fourier or Laplace transforms, the continuous wavelet transform (CWT)
is an integral transform. WT can be considered as a local Fourier analysis per-
formed at different separated levels. A formal definition of the CWT is now given.

Definition of the wavelet transform

We introduce the one-dimensional continuous wavelet transform (CWT) and some
of the basic mathematical results. We consider a function L[*(R, di). We decompose
this function § in terms of elementary functions obtained by dilations and transla-
tions of the real valued mother function ¥(t). Let us define v, = a'?®((t - b)/a).
The WT of s(t) is defined as (Daubechies 1994):

T,[S](a, b) = (‘Pa,b |s>Lz(R‘ pw=a""? ftp(t_a—b>s(t)dt, @

where (s]e) 2 4 is the scalar product in [*(R, dt). Thus the WT is basically the
scalar product of the function with the analyzing wavelet dilated by a and trans-
lated by b.

The analysis amounts to sliding a window of different weights (correspond-
ing to different levels) containing the wavelet function all along the signal. The
weights characterize a family member with a particular dilation factor. Thus the
wavelet coefficients correspond to the scalar product of the given signal S with
the wavelets l}’a'b(t) obtained by dilating (a) and translating (b) the analyzing
wavelet ¥(t). In other words, the WT T gives a serial list of coefficients called the
wavelet coefficients and represents the evolution of the correlation between the
signal § and the chosen wavelet at different levels of analysis (or different rang-
es of frequencies) all along the signal §.

The WT T is sometimes called a mathematical microscope or telescope be-
cause it allows the study of the properties of the signal on any chosen scale a.
For high frequencies (small a), the W functions have good localizations (being
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effectively non-zero only on small sub-intervals), so short-time regimes or
high-frequency components can be detected by WT.

CWT of rubella epidemics

We have calculated the CWT using a broad range of orthonormal, compactly sup-
ported analyzing wavelets (Misiti et al. 2000). We present results for the reverse
biorthogonal wavelet pairs: rbioNr.Nd. The order is represented by Nd and Nr (d
for decomposition and r for reconstruction). We chose this analyzing wavelet be-
cause the shape of both its reconstruction and decomposition wavelet functions
(psi-scaling functions), resemble the short-term oscillatory behavior of the first
differences of the monthly incidence of rubella in Mexico. Similar results were
obtained using other wavelets such as Haar and coiflet 2 (not shown).

In figure 2 the CWT of rubella incidence using as an analyzing wavelet the
reverse biorthogonal spline with Nr =1 and Nd = 3 (rbiol.3) is shown. Note that
every year there are three rhombi of similar size throughout 64 scales indicat-
ing self-similar fractal behavior of the signal. It is also evident that there is a
symmetrical pattern of the CWT over time. In particular, note that there are un-
interrupted dark diagonal straight lines: some diagonals increase over time,
from small scales to large scales, whereas other diagonals decrease over time,
from large scales to small ones. The resulting pattern is that of several repeti-
tive triangles consecutively formed over time. Some of these triangles have
their bases at high frequencies (small scales), whereas in others their bases oc-
cur at very low frequencies (large scales). Note also that these triangles are part
of the three rhombi formed every year, and of the rhombi formed every 4 and 6
years. Because the darker colors indicate the smallest values of the wavelet am-
plitudes, the dark diagonals represent the distribution of 61 quasi-fade—outs
(small number of cases) of the original time-series over time and for all scales.
The emerging successive and symmetrical triangles that arise from this distri-
bution of darker diagonals constitute the skeleton of the whole pattern of the
resulting WT. The transmission of rubella infection seems to be a multiplicative
process, following a power—fractal scaling repelled from these dark diagonals.
Each year there are bright vertical lines that cross all scales and that arise from
the vertex of some of these triangles at very low frequencies.

Multifractals

The multifractal formalism is a statistical description that provides global infor-
mation on the self-similarity properties of fractal objects (Sornette 2000). A
practical implementation of the method, consists first in covering the system of
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Figure 1. Monthly incidence of rubella in Mexico 1983-2001.
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Source: Created by the authors.

Figure 2. Color-coded CWT of the incidence of rubella.
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Note: The x-axis represents time (209 months) and the y-axis indicates the scale of the wavelet used (a = 1,
2, ..., 64) with large scales (low frequency) at the top. The brighter colors indicate larger values of the wavelet
amplitudes. The WA was performed with the reverse biorthogonal spline with Nr=1and Nd = 3 as an analyzing
wavelet and it uncovers a hierarchical scale invariance quantitatively expressed by the stability of the scaling
form. This wavelet decomposition reveals a self-similar fractal structure in the incidence of rubella every year,
i.e. there are three rhombi of similar shape at different ranges of the scale. The CWT also unravels a repetitive
pattern of successive triangles that are formed over time.

Source: Created by the authors.

linear dimension L under study by a regular square array of some given mesh of
size I. One then defines the measure of interest within the box. A simple fractal
of dimension « is defined by the relation:
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P~ (2)

Simply put, a multifractal is a generalization in which « may change from
point to point and is a local quantity. The standard method to test for multifrac-
tal properties consists in calculating the so-called moments of order g of the
measure P_defined by:

n(l)

X (= pa 3)

n=1
where n(I) is the total number of non-empty boxes. If scaling holds, then one has

Xq(l) ~ [@-1)ba (4)
which defines the generalized dimension g. For instance, D, corresponds to the
capacity dimension; D, and D, are the information and correlation dimensions,
respectively. In multifractal analysis, one can also determine the number N(I) of
boxes having similar local scaling characterized by the same exponent a. As-
suming self-similar scaling,

N, (1) ~(N/ D)@ (5)

Defining f(a) (the so-called multifractal singularity spectrum) as the fractal
dimension of the set of singularities of strength a the sum (3) can then be rewrit-
ten as:

X, = Y JRIND = ) JEAL/D ©6)
where J is the Jacobian of the transformation from the box index to its expo-
nent a.

Comparing (6) with the definition (4), we find the general relation between a
moment of order g and the singularity strength «, expressed mathematically as
a Legendre transformation:

fla)=qa-(q-1)D, @)

To obtain (7), we have used the fact that the Jacobian does not exhibit sin-
gular behavior for small I and thus does not contribute to the scaling law. Phys-
ically, expression (7) means that one set of boxes characterized by the same sin-
gularity a controls a given moment of order 4.
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Let us consider a geometrical support, where the quantity we are interested
in is measured. Let L denote the actual linear size of the support and M the total
value of the quantity on it. Now, let’s cover the support by boxes of size I such
that, a<< << L, where a is the lattice constant, i.e., the microscopic size of the
support. If m, is the total amount of the quantity measured inside the ith non-
empty box, we define the measure index, or Holder exponent, «; of this box by,

m;~M (%) i ®

Selecting the boxes which correspond to the same Holder exponent a we
will have a subset of all boxes. This subset is a fractal with fractal dimension

f(@) that is,
i -f(a)
N(C() ~ (L_> (9)

where N(a) is the number of boxes corresponding to a Holder exponent a. If
there exist a set of different Holder exponents the measured will be a multifrac-
tal measure, hence its distribution shows a highly complex set of singularities.
Alternatively, instead of the singularity spectrum, one can obtain a set of gener-
alized dimensions D, corresponding to the gth moment of the measure.

Again, if we cover the support with boxes of size I we have,

L[y me)

Dq = E 111_>r(1)1 () (10)
Actually, the generalized dimensions were introduced earlier, and it had been eas-

ier to computer it than the f(a) spectrum. The set of generalized dimensions charac-
terize the nonuniformity of the measure, positive g accentuate denser regions and
negative g accentuate rarer ones. When g = 0 we obtain the dimensions of the support,
when g = 1 we have the information dimension. When both f(a) and D, are smooth
functions they are related by a Legendre transformation, actually, f(«) is the Legendre
transform of 7(q) = (g — 1) D, Although both formalisms, namely the f(a) and the D,
formalisms, are equivalent, the description of a multifractal measure is more natural
by the f(a) spectrum. This is so because the singularity spectrum (f(«)) gives us an in-
tuitive description of the interwoven sets, with differing singularity strengths «,
whose Hausdorff dimension is f(a). To compute the singularity spectrum directly
from data, we will apply the method developed by Chhabra and Jensen (1989) and Ch-
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habra et al. (1989). This method can directly determine the singularity spectrum f(a)
from experimental data from systems where the underlying mechanisms are not well
known.

The recipe of the Chhabra and Jensen method is the following. Given the experi-
mental measure on the support, which has linear size L cover the support with boxes
of linear size I such as in the equations (2) and (3). If m(I) is the averaged value of the
measure inside the ith box, construct the one-parameter family of normalized mea-
sures u(q) whose value in the ith box is,

[m}"

_— 11
¥ [miD]* h

uig, )=

The role of g is the same as in the generalized dimensions, 4 > 1 implies re-
gion for stronger singularities, 4 < 1 regions of weaker singularities, and § =1
gives the original measure. The information dimensions of u(q) is,

w(a, ) =tim——3 u(q, Din[u(a, 1), (12)

0 In(D)4
and the average value of the singularity strength (or Holder exponent) is,

1
In(])

ola) =|im

Yula, Dinfu ()], (13)

These two expressions give us the singularity spectrum in terms of the g param-
eter.

Now we are ready to apply equations (11), (12), and (13) to our data. The
support in our case is the period of observations, the measurements are the
number of monthly number of rubella cases in Mexico during the period.

Multifractal spectra of rubella epidemics

The CWT of the epidemics of rubella suggested a multifractal dynamic. Therefo-
re, we calculated the multifractal spectra of the rubella incidence in Mexico (fi-
gure 3).
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Figure 3. The fractal singularity spectra versus the Holder exponent.

Multifractal singularity spectra for rubella in Mexico
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Source: Created by the authors.

Conclusions

We have shown how to extract the scaling behavior of the monthly incidence of
rubella infection. We have used the wavelet transform and the multifractal spec-
tra of the time series. The signal is fractal every year, multifractal over time, and
a symmetrical pattern emerges from the CWT.

All epidemiological models of infectious diseases consist of dividing the popu-
lation into several compartments such as susceptibles, infected, and recovered (SIR
models and variations of this). As far as we know, there are not mathematical epi-
demiological models that produce multifractal series of epidemiological phenome-
na. Fractional differential equations are needed to model this scaling pattern. We
have illustrated that rubella epidemics display a symmetrical fractal annual pattern
(self-similar) and multifractal dynamics. Symmetrical patterns in the epidemiology
of rotavirus infection have also been found (José and Bishop 2003). To characterize
the complexity of epidemic dynamics, a multifractal approach is necessary, since
several scaling exponents capture the dynamics at different scales.

The rapid changes in the time series are called singularities of the signal
and their strength is measured by the crowding index a (Holder exponent)
(Struzik 2000). The f(a) singularity spectrum provides a mathematically precise
and natural intuitive description of the multifractal measure in terms of in-
terwoven sets, with singularity strength @ whose Hausdorff dimension is f(a)
(Chhabra and Jensen 1989). K
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