
Universidad Nacional Autónoma de México 
Facultad de Estudios Superiores  

Campus Iztacala 
____________________________________________________________________       

       Revista Electrónica de Psicología Iztacala_______________________________ 

 

 

63

Revista Electrónica de Psicología Iztacala  
Vol. 9 No. 1 

Abril de 2006 

 

UNA REVISIÓN DE MODELOS DE MEMORIA DESDE EL 
GLOBAL HASTA EL BAYESIANO 

A REVIEW OF MEMORY MODELS FROM GLOBAL TO 
BAYESIAN 
Pablo Gomez1 

DePaul University, Chicago 
 
 

RESUMEN 

En éste trabajo, se exploran los fundamentos tanto 
empíricos como teóricos de algunos de los modelos de 
memoria más importantes. Una situación importante en la 
investigación sobre memoria fue el desarrollo de “Modelos 
Globales de Memoria”. En estos modelos, los juicios acerca 
de eventos únicos están basados sobre la comparación de 
todas las trazas de memoria en la prueba. Tres de los 
modelos de memoria global más importantes son SAM 
(Gillund y Shiffrin, 1984) TODAM (Murdock, 1982) y 
MINERVA2 (Hintzman, 1986, 1988). Este trabajo se 
organiza en forma cronológica. Se lleva a cabo una revision 
de los primeros modelos sobre memoria global antes de la 
llegada de los modelos globales sobre memoria. Luego se 
discuten los modelos globales sobre memoria. Y finalmente, 
se discuten algunos de los datos y modelos que son 
inconsistentes con los modelos globales sobre memoria, 
junto con las direcciones contemporáneas en los modelos 
sobre memoria, tales como Los Modelos Bayesianos sobre 
Memoria. 
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ABSTRAC 

In this paper, the theoretical and empirical foundations of 
some of the most important memory models are explored. 
An important stage in memory research was the 
development of “Global Memory Models”. In these models, 
judgments about single events are based on comparing all 
memory traces in memory to the probe. The three most 
important global memory models are SAM (Gillund and 
Shiffrin, 1984), TODAM (Murdock, 1982), and MINERVA2 
(Hintzman, 1986, 1988). This paper is organized 
chronologically: first data and models before the advent of 
global memory models are reviewed; then global memory 
models are discussed; and finally some of the data and 
models that are inconsistent with global memory models are 
discussed along with contemporary directions in memory 
modeling like Baysian Memory Models. 

 

Memory Research Before Global Memory Models. 

Models 

Before global memory models were developed, memory models assumed that 

judgments about events were based only on the contents in memory that were 

associated with the events. These early models used “localist” approaches to modeling 

memory.  Murdock (1974) distinguished between seven different localist approaches: 

temporally-structured models; the buffer model of Atkinson and Shiffrin (1968); 

organization theory (Mandler, 1967, Tulving, 1968); the address register model 

(Broadbent, 1971); sampling models (Shiffrin, 1970); the levels of processing model 

(Craik and Lockhart, 1972); and the associative network model by Anderson and Bower 

(1972). Each of these approaches are defined and reviewed, in turn, below.  It is 

important to recognize that these approaches are not necessarily exclusive.  Many were 

formulated to explain specific memory phenomena and none provides comprehensive 

accounts of human memory. 

Models that are considered temporally structured posit a number of separate 

memory stores.  These stores are differentiated based on the forgetting rate of the 
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contents, the format of information and their size.  For example, it is common to use two 

stores: a short-term store (contents decay within a minute) and a long-term store 

(contents decay over the course of days or weeks). The models that follow the 

temporal-structure approach (e.g., Murdock, 1967) are often depicted as flow charts 

where different boxes represent each memory store.  Any single item can be stored in 

any of the stores or in several stores simultaneously. Examples of this type of approach 

include Bower (1967), Glanzer (1972), Kintsch (1968, 1970) and Wickelgren (1970). 

One of the most influential temporally structured models was proposed by 

Atkinson and Shiffrin (1968, 1971). In this model there are both structural and control 

processes. The former are related to fixed properties of the system (such as the 

memory stores) while the latter are related to features or strategies used by the subject 

in processing information.  This model specifies the properties of the short-term store 

and the operations performed in it. Within the short-term store there is a rehearsal buffer 

composed by a limited number of slots. Incoming items are transferred from the sensory 

register to the buffer with a given probability. If the buffer is full, a new item displaces an 

old item in the buffer. The probability of an item being displaced is a function of the 

amount of time that item has already been in the buffer. The probability of a correct 

transfer from short-term storage to long-term storage is also a function of the amount of 

time that the item has been in the buffer. 

Another model that was a further development of the temporally structured 

approach was developed by Broadbent (1969, 1970, 1971). Murdock (1974) 

characterized this model as an address-register approach. The model assumes four 

components: the sensory store, the primary memory, the secondary memory, and 

between the primary and secondary memories an address-register. This address-

register holds information about the items, but not the items themselves. The contents 

of the address-register are conceptualized in the model as retrieval cues necessary 

during performance in memory tasks. 

Although these temporally structured models and their extensions appealing, 

they fail to account for a variety of important memory phenomena. An important set of 
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effects that these models are silent about are the effects of semantic information in 

memory tasks. Organization theory was an approach that attempted to account for 

semantic effects, and that Murdock (1974) described as a point of view, not as a real 

theory. The idea behind this approach was that the semantic organization of memory is 

reflected in subjects' performance in memory tasks, such as free recall. Bousfield 

(1953), Deese (1961), and Cofer (1967) among others, demonstrated that people recall 

in clusters of words. In their experiments, these clusters were based on categorical and 

associative information.  

The approaches described so far were primarily concerned with response 

probabilities. Response latencies are also an important dependent variable in 

psychological research. Some theoreticians were interested in free recall models 

developed to account for inter-response times. It is a well-documented phenomenon 

that the first few items that are recalled have shorter inter-response time than those 

recalled later. Sampling models (Shiffrin, 1970 & Rundus, 1973) were proposed to 

explain this difference in inter-response times. The assumption behind these models is 

that there is a search with replacement in memory. According to this assumption, items 

that are already recalled can be resampled, slowing down the recall of new items.  The 

probability of resampling increases as the number of items recalled increases. 

Another influential approach in the study of memory was originally proposed by 

Craik and Lockhart (1972). They elaborated a conceptual framework that criticized the 

temporally partitioned stores approach. Their main critique was that temporal models do 

not pay enough attention to the effects of different types of encoding.  Craik and 

Lockhart demonstrated that the persistency of a memory trace is a function of how 

deeply processed an item is. For example, an item that is processed at a structural level 

would have a weaker image than an item that is semantically encoded. 

The final approach considered by Murdock (1974) in his review is called  “Free 

Recall by an Associative Network” (FRAN, Anderson & Bower, 1972, Anderson, 1972). 

In this model there is a memory structure in which the entries are linked to one another 

based on dictionary definitions and a few random associations (to reflect human 
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idiosyncrasies). When a word is presented, it is stored in the short-term store, which 

works like a buffer. The long-term memory representation of the item and the 

associative paths from the item to other list items are tagged with a certain probability. 

These tagging processes are sensitive to the presentation rate of the item. The 

probability of an item being tagged is a function of the duration of that item in the buffer. 

Besides the buffer, there is a short-term store called the ENTRYSET, in which the 

words with the most associations are stored to be used as starters for associative 

retrieval. Retrieval is achieved by a sampling-search mechanism. First, items in the in 

the ENTRYSET and buffer are randomly sampled to be used as retrieval cues; then, the 

pathways from the cue are used to find tagged items; therefore, to retrieve an item it 

has to be reachable by a tagged path. 

Before global memory models appeared, there was debate among theoreticians 

on the types of processes involved in recall and recognition. In this context, Anderson 

and Bower (1972) and Kintsch (1974) proposed their models, which are classified as 

“embedded two process models” by Gillund and Shiffrin (1984). These two models 

assume that the recognition mechanism is a part of the recall process. There are two 

stages in recall: during the first stage, long-term memory is searched for possible 

candidates to be recalled; in the second stage, those candidates are recognized based 

on familiarity (Kintsch, 1974) or contextual association (Anderson and Bower, 1973). 

Recognition is a simpler task according to these models, because only the final stage is 

necessary. 

Tulving (1976) and Gillund & Shiffrin (1984) criticized these models because they 

were unable to explain how recognition is affected by some of the factors that affect 

recall, such as organizational effects, repetition, and list length. Following his idea of 

encoding specificity, Tulving (1976) suggested that recall and recognition have a 

common mechanism that is cue dependent and involves a search process and an 

implicit recognition. Gillund and Shiffrin (1984), on the other hand, noted that fast 

recognition at high accuracy levels challenges Tulving’s model because it predicts a 

large speed-accuracy trade-off given the need for an extended search. 
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To conclude this section, it should be noted that before global memory models 

appeared, although there were a lot of theories, few of them were explicitly stated as 

models. In many cases they were just “ways to think about” memory phenomena (i.e., 

hypotheses); however, they were influential on guiding the type of experiments 

performed, which is the subject of the next section of this paper. 

Empirical Research 

Since the 50’s, a rich set of data has been produced by recall and recognition 

experiments. Successful memory models have to account for it in a parsimonious and 

reasonably comprehensive manner. What follows is a review some of the most relevant 

experimental results that motivated the appearance of global memory models.  

Effects in Free recall 

In recall there are three first order effects (Murdock, 1974). The first one is that in 

multitrial free recall the acquisition can be characterized as a negatively accelerated 

exponential function. This is because the probability of recall increases rapidly after a 

few trials, and very slowly when the number of trials is larger. The second effect is the 

serial position effect (e.g. Murdock, 1962). Serial position manifests in the following way: 

a “U” shaped function of probability of recall by serial position. There is better recall of 

the first and last items in a list (first three and last eight in Murdok’s data), than for the 

items in the middle of the list. The third effect is related to the time between the 

recollection of each word. Inter-response time increases with ordinal position in the 

output (e.g., Murdock $ Okada, 1970). Interresponse time can be thought of as a 

function of the number of items yet to be recalled. 

Besides these first order effects in recall, several variables and manipulation 

have been know to affect recall and recognition and that I will present next. 
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List length and presentation time. 

A robust effect in recall and recognition is that performance decreases as the 

number of studied items increases. In recognition experiments, response latency  (e.g., 

Ratcliff and Murdock, 1976; experiment 3) and response probability (e.g., Strong, 1912) 

have been shown to be affected by list length. Presentation time has a similar effect as 

list length in recognition (e.g., Ratcliff, 1978; Ratcliff & Murdock, 1976; Murdock, 1974; 

Shiffrin, 1970). For example, Ratcliff and Murdock (1976) presented lists of 15 items at 

different presentation rates. All the words within a list had equal presentation times 

(presentation time was a between list variable).  Accuracy was higher for longer 

presentation times. In a similar experiment, in which presentation time was a within list 

variable, Ratcliff (1978) presented words at four different study times. RT decreased as 

a function of presentation time at a faster rate than in the Ratcliff & Murdock & 

experiment. An explanation for the difference in results between the Ratcliff  & Murdock 

& (1976), and the Ratcliff (1978) experiments, is that subjects in the Ratcliff & Murdock 

experiment might have been able to adjust their response criteria across the different 

lists.  

List length and presentation time have similar effects in recall as in recognition. 

Murdock (1960, 1962) analyzed the effect of list length, presentation time and serial 

position in a recall experiment. He found a list length effect that was larger than the 

effect of presentation time across all serial positions (i.e., the position of the item in the 

list). Murdock interpreted this data with a simple hypothesis called the “total-time 

hypothesis”. This hypothesis explained list length effects in terms of the relative study 

time devoted to each item. According to this hypothesis, less study time is devoted for 

each item in longer lists than in shorter lists.  Roberts (1972) found a non-linear effect of 

presentation time that contradicts Murdock’s total-time hypothesis. In Robert’s 

experiments, performance increased dramatically if total study time increased when the 

presentation times were short. However, for longer presentation times, increased study 

time did not improve performance. 
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Encoding Effects 

Several studies have been performed to test the effects of different encoding 

variables in recall and recognition performance. Perhaps one of the best known 

encoding effects is the one reported Craik and Lockhart (1972) regarding levels-of-

processing manipulations. The basic idea behind the levels-of-processing approach is 

that the quality of the initial encoding is reflected by measurements of performance in 

memory tasks. Craik and Lockhart also suggested that the incidental learning 

paradigms might be better than intentional learning paradigms because in the latter 

there might be covert idiosyncratic processes. An important manipulation following this 

approach was made by Woodward, Bjork and Jongeward (1973). They gave subjects a 

signal to either remember or forget a word after variable amounts of time. In a later 

surprise test, subjects were tested for all the words, including those that they were told 

to forget. The assumption was that if a subject received the signal to remember a word, 

this word would have had more maintenance rehearsal than if the subject had received 

the “forget” signal. Woodward et al’s results differentiate between recall and recognition: 

maintenance rehearsal benefited recognition but not recall. This result was accounted 

for within a “levels of processing” framework by Glenberg, Smith and Green (1978). 

They claimed that Woodward et al’s result were a consequence of a deep rehearsal 

(type II) for those words that were signaled to be remembered. On the other hand, 

shallow rehearsal (type I) was used in those words that were signaled to be forgotten. 

Another type of encoding effect that received a lot of attention is “encoding 

specificity” (Tulving & Thomson, 1973). Encoding specificity refers to the fact that 

memory improves if the coding at test phase matches the coding used during the study 

phase. This effect has been shown using several manipulations; for example, Light and 

Carter-Sobell (1970) shown participants related pairs of words (e.g., traffic—jam) during 

study. Then, in the test phase, participants had to make a recognition judgment for “jam” 

in the presence of “traffic” or in the presence of another word (e.g., “strawberry”) which 

is related to a homophone of jam. In accordance with the encoding specificity principle, 

performance was better when the same sense of the word was used during study and 
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test. In a related experiment, Tulving and Watkins (1973) gave subjects pairs of words. 

Some of them were strong associates (bark-dog) and some rhymed words (worse-

nurse).  In a cued recall test, 74% of the associative target words were recalled as well 

as 56% of the rhyming targets. During the second test phase, 30% of those targets that 

were not recalled with their original rhyming cue were recalled with a new associative 

cue; and 22% of the targets that were not recalled with their original associative cue 

were recalled with a new rhyming cue.  

Perhaps the best know example of the encoding specificity effect is an 

experiment by Tulving and Thomson (1973). In it, participants studied pairs of words, 

then were asked to produce associates of new words such that the targets studied 

before had a large probability of being produced (e.g., if the pair “head-light” was 

studied, “dark” was used as the cue for associates in the second phase). In the third 

phase of the experiment, subjects were asked to recognize, among the words that they 

generated as associates, the targets that they had studied before. In the final phase, a  

list of cues was given to subjects and they were asked to recall the target words. 

Performance in the recall phase (62.5% correct recall) was better than in recognition 

(25% hit rate). Tulving (1974) interpreted these results by arguing that memory has two 

sources. The first source is the information laid down as a result of the original 

perception of the event; and the second one is the retrieval cue, which is information 

present in the individual cognitive environment at the time retrieval occurs. Forgetting is 

a cue-dependent phenomenon consequence of a lack of appropriate information in the 

retrieval environment rather than a change in the specific stored information. Tulving’s 

claims challenged the dual process models of recall (e.g., Kintsch, 1970; Bahrick, 

1970). These models assume that recall consists of an implicit generation of candidates 

and the recognition process performed in those candidates. According to these models, 

recall of an item that could not be recognized before is impossible because recall 

requires information whose existence is denied by the recognition failure. 
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Word frequency 

When words are used in memory tasks, the participants already have a 

representation of those words in memory before the experiment starts. Not all of the 

words are equally accessible, and word frequency is a good estimate of their 

accessibility. There is an interesting interaction between word frequency and the type of 

memory task. Recall for high frequency words is better than for low frequency words 

(e.g., Deese, 1960; Sumby, 1963). However, if high and low frequency words are 

presented in the same list the word frequency advantage decreases or disappears 

(Duncan, 1974; Gregg, 1976). On the other hand, recognition is better for low frequency 

words than for high frequency words (McCormack & Swenson, 1972; Shulman & 

Lovelace, 1970). This effect on recognition holds even if high and low frequency words 

are mixed in the same list (Gregg, 1976). There are also word frequency effects in the 

distractors in recognition. McCormack and Swenson (1972) showed that the false alarm 

rate is higher for high frequency words than for low frequency words. Given the 

complexity of these interactions, word frequency effects are an important benchmark for 

memory models that try to account for both recall and recognition.  

Global Memory Models  

The models discussed in the preceding review share a localist approach to 

decisions about memory. The effects of context during study and test, as well as the 

richness of the data described in the previous section, forced theoreticians to develop 

new models. A new breed of model, called “Global Memory Models” was developed 

under the assumption that decisions about memory are achieved by matching or 

comparing the global contents of memory to the stimuli or context in which the memory 

task is performed. 

The SAM Model 

The first global memory model to be reviewed is the “Search of Associative 

Memory” (SAM) model (Raaijmakers & Shiffrin, 1980, 1981; Gillund & Shiffrin, 1984). 
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This model assumes that long-term memory is a matrix of memory images. These 

images represent three types of information: contextual information, used to identify the 

setting in which an item occurred; item information, that can be used to name and 

identify a memory trace; and inter-item information, which represents the association 

between items. The strength of the associations between the memory images and cues 

(e.g., context, or an item presented during a recognition test) form a retrieval structure. 

This retrieval structure is constructed based on the encoding operations whose 

description follows. 

Encoding 

SAM shares with temporally structured models the assumption of a primary 

memory and a secondary memory. Encoding starts in the primary memory. The model 

assumes a buffer of limited size r (r = 4 in Gillund & Shiffrin, 1984) in primary memory. 

When a new item enters the buffer, the oldest item is dropped. While items are in the 

buffer, they are rehearsed and encoded. Items that share time in the buffer have larger 

inter-item associations, whose size is a function of the amount of time they spend 

together in the buffer. Inter-item associations between two items did not share time in 

the buffer are equal to their pre-experimental association. Note that all these inter-item 

association are stored in secondary memory and represented in SAM's retrieval 

structure 

Retrieval Structure 

The values in the retrieval structure are a function of the rehearsal and coding 

processes during study and pre-experimental associations. In the model, items in the 

buffer share rehearsal time with the other items in the buffer. So, for each unit of time an 

item is in the buffer, it gets 1/n of the rehearsal time t (where n is the number of items in 

the buffer). 

In the retrieval structure as described by Gillund and Shiffrin (1984), the columns 

of the matrix represent memory images, while the rows represent the cues. The 

intersection between a memory image and a cue is the value of the retrieval strength 
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between that cue and that memory image. The value of this strength is obtained the 

following way: 

The context cue is represented in the first row of the retrieval structure matrix; the 

strength of association between context and the memory images is equal to the 

parameter a* times the rehearsal time. The diagonal of the retrieval structure represents 

the self-strength associations between each cue and their own memory image. This 

self-association value is equal to the parameter c* times the rehearsal time. The 

between item strength is the value of parameter b* times the number of units of 

rehearsal time that the items were together in the short-term buffer. The strength of 

association between a cue and a memory image that were not in the short-term buffer 

together at any time is equal to the value of the parameter d. Note that the strength of 

association between a distractor used as a cue and a memory image is also equal to 

the d parameter.  Variability is added to the strength values according to a 3-point 

distribution. There is a probability of 1/3 that a value remains the same; a probability of 

1/3 that a value increases by a factor of v; and a probability of 1/3 that a value 

decreases by a factor of v. 

Recognition 

During recognition, a direct-access familiarity process guides decisions. In a 

recognition task, when an item is presented, it combines with the context of the 

experiment to form a composite cue. The association of these composite cues to all 

memory images is summed across images according to: 

F(C, I ) =   S(I , I )  j j k
k=1

N

∑ , (1) 

where S(C,Ik) is the association between the context cue and memory image k; S(Ij, Ik) 

is the association between the memory image j (the test item) and image k; and F is 

termed familiairty. 

Because S(Ij, Ik) values tend to be higher for items than for distractors, the sums 

for items F(C,Ij) also tend to be higher than the sums for distractors. A criterion is set in 
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a manner similar to signal detection theory, and if the familiarity of a cue is larger than 

the criterion, an “old” response is produced. If the familiarity is lower than the criterion, a 

“new” response is produced. Signal detection measurements of performance, such as d’ 

can be calculated in the usual manner.  d’ would therefore be an estimation of the 

distance between the items’ and distractors’ familiarity distributions. These distributions 

tend to normality by effect of the central limit theorem.  

Recall 

Recall in SAM (Raaijmakers & Shiffrin, 1981; Gillund & Shiffrin, 1984), assumes 

a repeated sample & recovery process. In the first stage -- the sampling stage, the 

associations between the cue and all the images are used together as a probe set. In 

the first search cycle, only the context is used as a cue. The probability of sampling any 

item is calculated by Luce’s (1959) choice rule. The ratio of the activation of a given 

image to the summed activation across al items is given by: 

P I C S C I

S C I
S i

i

k
k

N( | ) ( , )

( , )
=

=
∑

1

 . (2) 

Once an item is sampled, the probability of recalling the name of the item given that 

only context was used as a cue is given by: 

P I C S C IR i i( | ) exp{ ( , )}= − −1 . (3) 

When an item has already been recovered, it can be used together with context 

to form the probe set. In that case, the sampling probability of an image is given by: 

∑
=

k
)I ,S(I )I S(C,

)I,S(I )IS(C,
 )I C,|(IP

kjk

kji
ji

s . (4) 

An image sampled with Equation 4, in which the previously recovered item and 

context form a compound cue, has a recall probability given by: 

P I C I S C I S I IR i j i j i( | , ) exp{ ( , ) ( , )}= − − −1 . (5) 
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The composite cue is used until a new item is recalled or the number of failures in a row 

reaches the value of the Lmax parameter, in which case the next sample uses contex 

alone (using Equation 2).  

Besides the calculations of sampling and recall probability, an important part of 

the model is its resampling mechanism. For each recall failure and for each resampling 

of an already recalled item the counter k increases by one. When k reaches the value of 

the Kmax parameter, recall terminates. Note that the image of an item that has already 

been recovered can be resampled, just as in the resampling models (Shiffrin, 1970; 

Rundus, 1973) described before. This feature of the model allows it to make correct 

predictions about inter-response times as a function of output order. 

List Length. 

In the SAM model, the familiarity of an item is computed by adding the products 

of the strength of association between the cues and the memory images (Equation 1). If 

a longer study list is presented, the number of memory images increases. Because 

most of these images would not share rehearsal time with the image of the recognition 

item (i.e., they were not together in the buffer), they add values associated with the d 

parameter.  When a new item is presented as a probe, all the strengths of association 

between memory images and this probe are also related to the d parameter. If the list 

length increases, the global familiarity increases by the same amount for both items and 

distractors. Performance is worse because longer lists add additional terms to the sum 

in Equations 1 and 3, and each of these terms adds independent variance components. 

The distractor and target distributions, although equally apart from each other as in 

shorter lists, overlap more in longer lists given that they have larger variances. 

A different mechanism explains the effect of list length in recall. The effect is 

located in the sampling part of the model. The probability of sampling any item 

decreases as list length increases. This is because the probability of sampling a cue is 

given by Equations 2 and 4, and the denominator in this equation increases as list 

length increases.  Recovery probabilities (Equations 3 and 5) do not change with list 
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length, but the probability of sampling an image highly associated with a cue  decreases 

while the probability of sampling a distal image increases. 

Presentation time 

When items are studied for longer time, performance improves in recall and 

recognition. The SAM model captures this effect  because increasing the presentation 

time increases the association strengths (context, inter-item and self-strength) that are 

built-up during rehearsal. Therefore, in recognition the mean of the familiarity 

distribution increases, making the difference between the mean of the distractor and the 

mean of the target distribution larger. In recall, sampling probabilities remain the same, 

because the effect of presentation time is on both the numerator and denominator of 

Equations 2 and 4. However, the probability of recovery increases with presentation 

time because the S(C,Ij) component in Equations 4 and 5 increases. 

Encoding effects 

Intentionallity of encoding.  

Gillund and Shiffrin (1984) suggested that intentional encoding associated to 

increased expectancy of recall improves inter-item encoding at the expense of self 

encoding. This claim is supported by the model’s ability to predict the correct interaction 

between intentionality of encoding and type of task (recall or recognition). Estes & 

DaPolito (1967) increased inter-item association by means of the instruction they gave 

to participants. They found that the instructions increased recall but did not increase 

recognition. In addition, when instructions were changed from incidental to intentional, 

recall performance improved, but recognition decreased.  

Maintenance rehearsal 

In the Woodward et al. (1973) experiment, maintenance rehearsal increased 

recognition but not recall. The assumption made by Gillund and Shiffrin was that 

maintenance rehearsal increases self-strength, but reduces inter-item and context 
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coding. This is because the item being rehearsed displaces other items from the buffer. 

The implementation of this assumption in SAM involves an increase in the c parameter 

and a small decrease in the b parameter. This increases the mean of the familiarity 

distribution for rehearsed items, improving recognition.  

Because self-sampling is increased, in the recall model, the chances of sampling 

a new image are reduced. Each time an already recovered item is resampled, the k and 

l counters increase; therefore, the Kmax and Lmax criteria are reached faster. 

Encoding specificity 

Tulving & Thomson (1973) demonstrated that the match in semantic context 

between study and test is a predictor of performance. In a related experiment, Light and 

Carter-Sobell (1970) manipulated semantic context during the study phase introducing 

biasing words (e.g., strawberry or traffic) as adjectives to target words (e.g., jam). 

During a recognition test, the target words were tested in the presence of the same or a 

different biasing word. Performance was better when the biasing word was the same 

during study and test. Given that the SAM model has a cue-dependent retrieval  

mechanism (see Equation 2), it implement’s Tulving’s cue-dependent retrieval view. 

SAM handles encoding specificity effects with two mechanisms: one is based on the 

coding of the test item and the other is based on the familiarity of the test pair. The first 

one is implemented by changing the values of the encoding parameters b and c. These 

parameters change because the encoding of an item is determined in part by the 

stimulus environment, and encoding during study and test time could be different. The 

second mechanism can be exemplified with the Light and Carter-Sobell experiment: if 

the biasing word is the same during test and study phases, the biasing term is strongly 

linked to itself and to the target, adding to the global familiarity. 

Distractor similarity effects 

When one or some of the new probes presented during a recognition test are 

semantically or ortographically similar to one or more of the targets, these distractors 
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are harder to identify as “new”. Gillund and Shiffrin (1984) reviewed a number of studies 

and concluded that physical similarity is more important than semantic similarity; 

however, SAM cannot differentiate between semantic and physical similarity. The SAM 

model assumes a different value for the d parameter when the similarity between the 

new and the old items increases. The d parameter is related to the strength of 

association between the image of two words that were not together in the study buffer. 

When the association between distractors and memory images of studied words 

increases, the variance and the mean of the familiarity distribution for distractors also 

increases, decreasing d’. 

Word frequency effects 

Performance for high frequency words is better in recall, but worse in recognition 

relative to low-frequency words.  In the SAM model, high frequency words are thought 

to have higher associations than low frequency words. These associations are captured 

by the parameters b and d (note that self strength and context do not change as a 

function of word frequency). High frequency words have a d value of dh and a b value of 

bh; on the other hand, low frequency words have a d value of dl and a b value of bl 

(dh>dl and bh>bl). With these differential parameter values, SAM can account for the 

word frequency-task interaction. In recall, the superiority of high frequency words is 

related to the fact that the recovery probabilities are higher for high frequency words 

than for low frequency words. In recognition, the residual values of the items increases 

as d and b increase. This increases the spread of the signal distribution, decreasing d’. 

ThE MINERVA2 MODEL 

Hintzman (1986, 1988) proposed a different model he termed MINERVA2. This 

memory model shares the assumption of a global matching with SAM, but the two differ 

in other aspects of representation and procecess. MINERVA2 is primarily concerned 

with long-term memory (secondary memory). It does not provide an account of short-

term , unlike SAM. MINERVA2 assumes that primary memory communicates with long-
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term memory reading an image of the cue, or retrieving a memory image or “echo” to 

produce a response. In MINERVA2, memory traces are assumed to be composed of a 

vector of primitive features.  These features can only take values of 1, -1 and 0.  The 

values of 1 and -1 occur with equal probability and represent the relevant information of 

a stimulus. Information about a feature might be irrelevant or not encoded by the 

system; these features have a value of 0. Each memory experience leaves behind its 

own trace, even if it is a repeated one (i.e., when words are repeated in the study phase 

of a memory experiment, each presentation is stored as a separate memory trace). The 

memory traces in secondary memory are not perfect copies of the events in primary 

memory. Features are probabilisticly encoded with probability L of being encoded 

correctly per unit of time, and 1-L of being encoded as a 0. The L parameter is related to 

the quality of the encoding processes. 

Recognition 

When a probe is presented for recognition, it is matched in parallel to all memory 

traces. The activation of each trace is a function of its degree of match with the probe, 

which is computed by: 

∑
=

=
N

i N
jiTjPiS

1

),()()(
, (6) 

where P(j) is the value of feature j in the probe and T(i,j) is the value of the jth feature in 

the ith trace. The values that S(i) can take range between -1 and 1. When the probe and 

a trace are identical, the value of S(i) is equal to 1. On the other hand, when the trace 

and the probe are orthogonal, the value of S(i) is 0. Negative values have no special 

meaning in the model. 

To preserve the sign of S(i), and to reduce the influence of several poorly 

matched traces that would be equivalent to one close match, S(i) is transformed by 

A(i) = S(i)3. (7) 
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This transformation enhances the strong matches, and reduces the activation 

values of weak matches, increasing the contrast between weak and strong items. 

The sum of the activation across all traces can be thought of as the combined 

activation (or as Hintzman calls it: “echo intensity”) and it is given by: 

I A i
i

M

=
=
∑ ( )

1

, (8) 

where M is the total number of traces in memory. 

Two important properties of these equations should be pointed out. The first is 

that the expected value of  I for a new probe is 0. The second is that this expected value 

is unrelated to M, while the standard deviation is. 

Recall 

MINERVA2 was formulated as a recognition model, however, based on 

Hinztman’s (1988) suggestions a recall model can be envisioned. In the recall model, 

the representation of all the items in a list would share a set of "context features". 

During recall, the context features would be presented as a probe, and the traces 

activated to a threshold would be recalled. A slightly more sophisticated model would 

involve a sampling and retrieval mechanisms similar to those described in the SAM 

model for recall. 

List Length.  

MINERVA2 accounts for the effect of list length assuming that neither L (the 

probability of correctly encoding a feature) nor N (the number of features per probe) 

changes across different list lengths. However, the overlap between the signal and 

noise distributions does increase. This is not related to a smaller difference in the 

means of the distributions, because the expected value of A(i) for a mismatch is 0. It is 

related to an increase in the unstudied to studied variance ratios (Gronlund & Elam, 

1994). For each additional item in the list, there is an independent extra component in 

the variance of the familiarity distribution.  
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Presentation time 

Presentation time is captured in MINERVA2 by modifying the value of the L 

parameter. Higher values are associated with longer presentation times. Changes in the 

L parameter produce a change in the mean of the I distribution for the old items. This is 

because there would be more non-zero values in Equation 7. 

Encoding effects 

MINERVA2 is a model of how information flows from primary to secondary 

memory, and how it is stored and retrieved from secondary memory; therefore, the 

model’s ability to account for encoding effect can be evaluated. The model has only one 

parameter related to encoding: L. This limits the model’s ability to account for 

interactions such as those found in intentionality of encoding manipulations (e.g., Estes 

& DaPolito, 1967). Furthermore, the recall model is not fully implemented, and testing 

the model's abilities to account for differential effects in recall and recognition cannot be 

done until a more elaborated recall model is available. 

A few encoding effects can be explained adding assumptions to the recognition 

model. For example, to account for encoding specificity effects with MINERVA2, a set of 

"semantic context" features could be added to the studied items and the test probes. If 

the semantic context was the same during  the study and test phases, the semantic 

context features of the test probe and the memory image would match, resulting in an 

incresase in the value of I. 

Another encoding phenomenon that MINERVA2 can account for, is the effect of 

similarity between items and distractors. If the items and distractors were similar, they 

would share some features (i.e., they would not be orthogonal). This would increase the 

expected value of the echo intensities for new probes. Note that for MINERVA2 there is 

no difference between semantic and physical features of the stimuli, and it would be 

impossible to model the difference between these two types of information. 
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Word frequency effects 

MINERVA2 does not have a straightforward mechanism to account for word 

frequency effects. Hintzman (1986, 1988) suggests an ad hoc assumption to account 

for word frequency effects in recognition. Low frequency words have more salient 

properties than high frequency words, and are better encoded into secondary memory 

because they have higher L values. Recent models like REM (Shiffrin & Steyvers, 

1997), and McClelland and Chappell's (1998) use a representation mechanism similar 

to the one proposed in MINERVA2. These models account for word frequency effects in 

recognition through their assumption about how the values of the features are selected, 

and how this selection could be related to word frequency. Later in this paper, these 

new models will be reviewed in detail. 

The TODAM MODEL 

The third memory model I present is the TODAM model (Murdock, 1982, 1983). 

Most memory models, including those reviewed so far in this paper, assume that 

memory traces are stored separately from each other. TODAM, on the other hand, 

assumes that all items are stored in a single common memory vector. Another unique 

feature of the TODAM model is that it has a decision mechanism that has been further 

developed (Hockley & Murdock, 1987) to account for response times. 

A single event of item is represented in TODAM as a vector of attributes. The 

value of each attribute is drawn from a normal distribution with mean of 0 and variance 

1/N. The expected value of the dot product of two independent vectors equals to 0 ( E[f 

• g] = 0). A vector of attributes representing an item is added to the global memory 

vector if the item is studied alone. When items are studied in pairs (associative 

information), the vectors representing the two words, plus their convolution are added to 

the global memory vector using: 

Mj = αMj-1  + γ1fj + γ2gj + ω (fj * gj), (9) 

where f and g are the members of the pair, * is the convolution operator, γι represents 

the weighting parameters for item information; ω is the weighting parameter for the 
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associative information and α is the forgetting parameter. Metcalfe & Murdock (1981) 

suggested that there are two "levels" of memory, and that the global memory vector is 

located in the M level, while the items are stored in the I level. The transfer between 

these two levels is not perfect, because encoding is assumed to be an error prone 

process. There is a probability p (where 0 < p <1) of encoding a particular element 

correctly, and a probability (1-p) of encoding that element as 0.  

Recognition 

This model bases its recognition decisions on the dot product of the test probe 

and the memory vector. This dot product can be thought of as the “familiarity” dimension 

over which a signal detection (Swets & Green, 1961) type of mechanism is applied. The 

input to the decision mechanism is influenced by noise during the decision process. To 

simulate noise in the model, random variability is added to the dot product. This sum is 

compared to two response criteria (Atkinson & Juola, 1973, 1974). If the sum is smaller 

than the low criterion, a fast “new” response is produced; if it is larger than the high 

criterion, a fast “old” response is produced. If the value is between the two criteria, more 

independent random noise is added until the sum reaches either criterion. It is assumed 

that the difference of the values of the criteria decreases as a function of time; therefore, 

a response must eventually occur.  

Each noise sampling cycle is assumed to take an increasingly longer time, this 

allows the model to account for the positive skew in RT distributions. The model 

provides a detailed explanation of how a reaction time is estimated. According to this 

explanation, there are  two components that are convoluted to form a reaction time. The 

first component is the decision time that is derived from the following equation (Hockley 

& Murdock, 1987): 

T k k BCTk( ) ( )= + +2 2 , (10) 

where T is the decision time, k denotes the number of previous cycles, and BCT  is the 

base cycle time, which is the only parameter and is a scale factor. The second 
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component in the convolution is a normal distribution that represents the non decision 

proceses, refered as TOS (time for other stages). Hockey & Murdock fitted this decision 

model to data from the convolution analysis presented by Ratcliff & Murdock (1976). 

The decision stage outlined before has a limited effect on response probabilities 

and d’. In TODAM, as in any other model that has a signal detection type of decision 

mechanism, there are two factors related to recognition performance (as measured by 

d’). The first is one is the distance between the means of the signal and noise 

distributions. The second one is the ratio between the variances of the familiarity 

distributions for items and distractors. When the ratio increases, the overlap between 

the two distributions also increases, reducing d’. The parameters of TODAM affect 

these two factors in different ways. The parameter N (number of attributes) affects the 

size of the variances; large Ns produce smaller ratio variances than small Ns. On the 

other hand, the α and γ parameters affect the distance between the means and the 

variance ratio. 

Recall 

In the TODAM model, recall is achieved by a mechanism more complicated than 

the one proposed for recognition. The correlation between the memory vector and the 

cue is used during retrieval. Correlation is the inverse operation of convolution; the 

correlation between f and f convoluted with g (  f # (f * g) ) equals g’, a vector similar to 

g. This vector, g’ is the recalled item.  

The way that item vectors are constructed make the correlation function as a 

retrieval mechanism: the expected value of the dot product of two unrelated unrelated 

items is 0 (E[f•g]=0), while  the expected value of the dot-product of an item vector to 

itself is one (E[f•f]=1). When items are studied in pairs (e.g., f and g), the correlation of a 

member of the pair with the global memory vector results in vector similar to the other 

member of the pair (g#M= f’). Since the vector obtained with correlation is not exactly 

the vector that was studied, Metcalfe and Murdock (1981) suggested that the dot 



Universidad Nacional Autónoma de México 
Facultad de Estudios Superiores  

Campus Iztacala 
____________________________________________________________________       

       Revista Electrónica de Psicología Iztacala_______________________________ 

 

 

86

product of this vector and all the vectors of the studied items should be obtained. If the 

highest value is that of  f’•f , then a correct recollection is assumed to happen. 

List length 

According to closed form solutions particular of Weber (1988). In TODAM, both 

variance and mean familiarity are affected by list length. This is a problem according to 

Gronlund and Elam (1991), who point out that in order to fit the list length data, the 

parameters N, α and γ have to be changed in rather arbitrary ways. For example, in 

some conditions the N parameter (number of features) has to decrease for the short list 

condition to make to correct prediction. This assumption seems unreasonable. For this 

reason, TODAM does not provide an accurate description of the list length effects. 

Presentation time 

Murdock proposed a mechanism that can account for presentation time. Longer 

presentation times correspond to higher γ values. This increases the mean familiarity for 

both item and associative information. Although the variance also increases, it does so 

at a slower rate than the mean. 

Encoding effects 

TODAM’s assumptions about encoding can be adjusted to try to account for 

encoding effects. This adjustments can be reflected in the values the features of the 

vectors, and in the values of the γ parameters. 

Intentionality of encoding. 

Estes and DaPolito (1967) showed that increased inter-item association, which is 

related to the γ3 parameter in Equation (1), increases recall but not recognition. TODAM 

would have problems with this differential effect, given that a higher γ3 value would 

increase both recall and recognition. This or any other effect that dissociates between 

recall and recognition, is hard to account for by TODAM. 
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Maintenance Rehearsal 

Woodward et al (1973) have shown that maintenance rehearsal improves 

recognition but not recall. Mapping maintenance rehearsal into TODAM’s parameters is 

not straightforward. The parameter BCT in Equation 10 is the only one associated only 

with recognition and not with recall; however, a reason why mantainance rehearsal 

should affect this parameter is not transparent. If maintenance rehearsal was related to 

the γi or ω parameters, the model would not predict differential effects on recall and 

recognition. 

Encoding specificity 

A similar mechanism as the one proposed during the discussion of MINERVA2, 

could be used by TODAM to account for encoding specificity effects. Some of the 

features or attributes of the memory vectors could contain contextual information; 

therefore, if these features match between the study and test phases, a stronger dot 

product between the probe and the memory vector would be found. This would increase 

performance in both recall and recognition, which is in accordance to the published 

data.  

Tulving’s cue-dependent assumptions are also implemented in TODAM (Ratcliff 

& McKoon, 1989). Failure to recognize recallable items is accounted by the model 

because the associative and item information are independent from each other. 

Distractor similarity effects 

A straightforward way to implement similarity between distractors and items is by 

having them share some features. This would increase the familiarity values of those 

distractors similar to the items and would increase the overlap between the item and 

distractor distributions of familiarity, decreasing d’. 
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Word frequency effects 

The original formulation of TODAM does not have a way to account for word 

frequency effects. However, as described earlier, there are new models share with 

TODAM and MINERVA2 the assumption of  memory images represented as a vector of 

features (Shiffrin & Steyvers, 1997; McClelland & Chappell, 1998), and are able to 

account for word frequency effects. The values of the features are related to word 

frequency. A detail explanation of these models will be provided by the end of this 

paper. 

Applications and Problems of Global Memory Models. 

Although each of the models has particular strengths, the three models reviewed 

so far share the assumption of a global familiarity in memory and a response 

mechanism for recognition based on signal detection. Research that appeared after 

these model were developed was aimed at testing fundamental properties of the 

models. Some of the data collected proved to be hard to account for by the models. 

This challenged the core notions behind global memory models as well as specific 

assumptions of each model. In the next section, empirical effects that are particularly 

problematic for global memory models are reviewed: [a] time course of processing, [b] 

z-ROC curves, [c] the mirror effect, and [d] the null list-strength effect 

Time Course of Processing 

Speed-accuracy trade-off functions 

One limitation of global memory models is that they are silent about time course 

of processing (excluding the update to TODAM, Hockley & Murdock, 1987). SAM, and 

MINERVA2 can not predict RT performance, although a random walk process (Link & 

Heath, 1972) or diffusion process (Ratcliff, 1978) could possibly be implemented as a 

decision process for these models. However, there is data that would be difficult to 

account for by global memory models even if a successful interface with a diffusion or 
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random walk process is accomplished. Some of this data was presented by Gronlund 

and Ratcliff (1989). They explored the time course of the recognition process of 

individual items and associative information. Their experiments used a response signal 

procedure (Dosher, 1981; Reed, 1973, 1976; Schouter & Bebber, 1967; Wickelgren, 

1977). In this procedure, subjects are instructed to respond within 200-300 ms after a 

signal is presented. The signal is presented after the onset of the stimulus at times 

determined by the experimenter. Performance (measured with d’) can be plotted as a 

function of the lag between the stimulus and the signal + the RT after the signal. 

Accuracy increases monotonicaly and can be fitted using a negatively accelerated 

exponential function (Reed, 1976; Wickelgren, 1977; Dosher, 1981): 

d’(t) = d’a (1-e-v(t-ter)). (10) 

Also, an expression derived from the diffusion model (Ratcliff, 1978) could be 

used to fit the speed –accuracy trade-off curve: 

d t d
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,  (11) 

where v is the rate of approach to the asymptote and also the ratio of the variance of the 

drift rate in the diffusion process, to the variance of the retrieval probe-memory 

relatedness distribution. 

The parameters of these functions have psychological interpretations. Ter is the 

intercept, which is a measure of the minimum processing time necessary to for 

accuracy to begin to rise above chance; d’a is the asymptotic performance; and v is the 

rate at which performance reaches asymptotic level. 

Gronlund and Ratcliff’s (1989) primary concern was the difference between the 

time course of processing of associative and item information. Global memory models 

assume that item information and associative information arise from a common 

mechanism, and should have similar intercept and rate of accumulation even if the 

asymptotic level of performance is different. In one of Gronlund and Ratcliff’s 
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experiments, participants studied pairs of words. Then, participants were asked to 

recognize either pairs or single words. They were supposed to respond “old” if a pair of 

words consisted of two words from the study list even if they were not studied together 

(called AB’ pair). They were also instructed to respond “old” to pairs of word that were 

studied together (AB) as well as to individual items studied in the list. The response 

signal function of items studied together versus items not studied together had a larger 

intercept than the function of any other pair of stimuli type. This implies that associative 

information begins to be available later than item information (the Ter parameter is 

higher for the AB-AB’ function than for any other function). This result challenges global 

memory models. 

In SAM, familiarity is given by the summed associations between the item (or pair 

of items in associative memory) and all the memory images. This mechanism cannot 

predict differences in the time of availability for item and associative information 

because both types of information are used at the same time. MINERVA2 models 

associative memory with the assumption that a probe consisting of two items makes a 

single vector of features twice as large as a single item’s vector. As Gronlund and 

Ratcliff (1989) point out, the contribution of item and associative are inseparable parts of 

the total activation. 

The TODAM model has an important difference from MINERVA2 and SAM. In 

TODAM, memory is represented as a single vector to which each item’s trace is added 

during storage. For pair learning, the two items and the convolution of the items are 

added to the memory vector. Recognition is accomplished by comparing the value of 

the dot product between the memory vector and the probe to a high and low criterion. If 

the probe is a pair of items, they are also convoluted and the result of the convolution is 

treated as the probe; therefore, item and associative information go together into the 

convoluted probe, which is inconsistent with Gronlund and Ratcliff’s (1989) results. 

However, a simple modification could be envisioned. It would involve matching the two 

items separately for item information, and using the convolution only for associative 
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information. This way, it could be possible to predict differences in the intercept and rate 

of accumulation between item and associative information. 

Non-monotonicity in the accumulation of information 

There is experimental evidence that indicates a non-monotonic accumulation of 

information. This is at odds with the predictions of global memory models. Ratcliff & 

McKoon (1982, 1989) and Dosher (1984) found that in short lags, subjects make 

judgment errors when the information available early in the process is inconsistent with 

the information available later. Another result that seems to challenge the equal 

intercept and equal rate prediction made by global memory models is one presented by 

Dosher (1988), who found that associative and item information become available at the 

same time but have different rates. 

In another experiment by Gronlund and Ratcliff, participants were instructed to 

respond “new” to AB’ pairs (two words studied but not in the same pair); therefore, they 

had to use associative information to discriminate between AB and AB’ pairs. 

Interestingly, the probability of responding old to AB’ pairs grows until 600 ms; then it 

goes down (note that the correct response to this type of pair is “new”). After 600 ms, 

the associative information becomes available; therefore, the drift of the diffusion 

process changes. 

Global memory models were not designed to account for all time course effects, 

but the problems posed by Gronlund and Ratcliff’s results go beyond pure time course 

concerns. They challenge the notion of associative and item information being accessed 

at the same time and by the same mechanism. 

Z-ROC Functions 

Memory models should be able to accurately predict ROC curves. ROC curves 

can be constructed using payoffs, different ratios between old and new items, or by 

asking participants to rate the confidence of their responses. For each level of either of 

these manipulations, the hit and false alarm rates are calculated and serve as 
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coordinates of a point in the ROC space. These points form a ROC curve. The shape of 

the signal and noise distributions can be inferred z-transforming ROC curves. Given the 

assumption of normality of the signal and noise distributions, z-ROC curves are 

predicted to be straight lines that can be characterized by their slope and their y-

intercept. The intercept of the best fitting line provides an estimate of d’ and the slope is 

an estimator of the ratio between the standard deviations of the new (unstudied) and old 

(studied) distributions.  

Ratcliff, Sheu and Gronlud (1992); Ratcliff, McKoon and Tindall (1994); and 

Gronlund and Elam (1994) examined empirical  z-ROC functions using a variety of 

manipulations. Across several experiments, they found linear z-ROC functions, which is 

in accordance to the assumptions made by signal detection theory and by global 

memory models. However, the most important result for its implications for memory 

models is related to the slope of the z-ROC functions. Gronlund and Elam (1994) found 

that the slopes of the z-ROC functions were not different to 1, and remained constant 

across different list lengths. The constant slope is a problematic result for global 

memory models, because it implies that the ratio of signal and noise variances is 

unrelated to list length. As explained earlier in this paper, according to global memory 

models list length affects the ratio of signal to noise variance, of which the slope of a z-

ROC curve is a measure. Ratcliff et al. (1992) manipulated list strength and found that 

when d’ is larger than 0.5 the slopes of z-ROC functions remain constant at a 0.8 value. 

While the three models fail to predict accurately Ratcliff et al’s results, they do it for 

different reasons. SAM and MINERVA2 predict that the slope of the z-ROC should 

decrease as a function of strength; while TODAM fails to predict the correct value for 

the slope. TODAM predicts a slope close to 1.0 (i.e., the familiarity of old and new items 

should have equal variances according to TODAM). 

List-strength 

List strength refers to the strengthening of certain items by studying them longer 

or by repeating them. Tulving & Hastie (1972) showed that recall of repeated items 
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improves at the expense of non-repeated items. As described in the first section of this 

paper, Ratcliff (1978) found that manipulating presentation times within a list had a 

larger effect in RT than if presentation time is a between list variable (as in Ratcliff & 

Murdock, 1976). Ratcliff, Clark & Shiffrin (1990) were interested in the effect of 

differential study time within a list and its implications for global memory models. Global 

memory models predict that memory for strong items should be greater in mixed lists 

than in a pure-strong list. Weak items, on the other hand, should be better in the pure 

condition. This prediction emerges from the decision mechanism assumed by these 

models. The explanation of this prediction was outlined by Shiffrin, Ratcliff and Clark 

(1990). Performance, as measured by d’ is given by: 

d E F i E F x
Var F x

' [ | ] [ | ]
[ | ]

=
− ,  (12) 

where E[F|i] is the expected value of familiarity when studied items are tested,  E[F|x] is 

the expected value of the familiarity when a distractors are tested, and Var[F|x] is the 

standard deviation of the familiarity distribution when distractors are tested. Recognition 

performance in the mixed -pure manipulation can be denoted d’(pure strong), d’(pure 

weak), d’(mixed strong), d’(mixed weak). Consequently, the denominators in Equation 

12 can be denoted as u(list type-strength), and the denominators as σ(list type-

strength). Global memory models predict that if the items are blocked with items of 

similar strength in the study list, then u(pure strong)=u(mixed strong) which are larger 

than u(pure weak)=u(mixed weak). In other words, the denominator is a function only of 

the target’s strength, and it is unrelated to the composition of the list. The value of the 

denominator is unrelated to the strength of the items because it is the variance of the 

familiarity distribution when a distractor is tested. So, σ(mixed-strong) = σ(mixed-weak) 

because in both cases the list is the same. 

The heart of the list strength effect prediction in global memory models comes 

from the following equations, which are just ratios of Equation 12: 
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d ps
d pw

u ps
ps

u pw
pw

' ( )
' ( )

( )
( )

( )
( )

= σ

σ
 (13 a) 

and 

d ms
d mw

u ms
ms

u mw
mw

' ( )
' ( )

( )
( )

( )
( )

= σ

σ
. (13 b) 

To estimate the size of the list strength effect the ratio of these two ratios can be 

obtained: 

R
d ms

d mw
d ps

d pw

ps
pwr = =

' ( )
' ( )

' ( )
' ( )

( )
( )

.σ
σ

 (14) 

Rr is greater than 1 if there is a list strength effect, and equal to 1 if there is a null 

list strength effect. 

Models that predict a larger variance in the pure strong list than in the pure weak 

list will predict a list-strength effect. And since these variances can be decomposed into 

the sum of independent components (e.g., σ(ps) = N iS(var[ ]) , where iS  is the ith item 

of the strong list),  

R Var i
Var ir

STRONG
WEAK

= ( )
( ) . (15) 

Models that decompose the variances in this way and predict larger variance 

associated with strong than with weak items, predict a list strength effect. For the 

reasons explained above and during the presentation of the models, SAM, TODAM, and 

MINERVA2 predict Rr to be larger than 1. 

Ratcliff et al. (1990) found no evidence in favor of a list strength effect in 

recognition when the strength was manipulated using different study times. They found 

a list strength effect using repetition in free and cued recall but not in recognition. These 
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results are problematic for global memory models. The original formulation of these 

models predicted list-strength effects. Shiffrin et al. (1990) explored modifications to 

TODAM, MINERVA2 and SAM that could potentially help them account for the null list-

strength effect. Only SAM could be modified to satisfactorily account for the data. 

Among the global memory models, SAM is the only one that proposes a separate 

mechanism for recall and recognition. Two different cue weightings are used in recall 

and recognition. Ratcliff et al. (1990) argue that this is because in recall, context focuses 

more in the item trace than in recognition, which is based on global matching. The 

difference between adding items and adding strengths is that strong items are stored in 

a single memory image. Shiffrin, Ratcliff & Clark (1990) proposed a “differentiation” 

process within SAM. It consists in two complementary forces in the activation of strong 

traces by unrelated items: activation from the context cue increases while activation 

from the item cue decreases. This implies that when the association between a memory 

image and its list context is strengthened, the associations between the memory image 

and all other potential stimuli are weakened. This is maybe because the differences 

between a strong item and the unstudied items become more salient; therefore, when in 

recall only the context cue is used, there is an increase in activation. This differentiation 

process has been challenged by data from Ratcliff, McKoon & Tindall (1991). In their 

first two experiments they used fast presentation times, and their results are problematic 

for the differentiation approach. McClelland & Chappell, (1998) and Shiffrin & Steyvers 

(1997, 1998) have recently used a Bayesian decision approach to implement the notion 

of differentiation. In the next section, I will describe these models. 

Rational Models 

The Rational Approach 

Over the last few years, models that share rational assumptions and a Bayesian 

decision mechanism have appeared. Anderson (1990) introduced the notion of a 

Bayesian decision mechanism for memory. An instanciation of Anderson’s ideas can be 
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found in a model proposed by Schooler and Anderson (1997). I will not go though all the 

details of the model, but I will mention some of its assumptions. It shares the Bayesian 

approach with other recent models. In its formulation, its authors revisited Estes’s 

(1955) Stimulus Fluctuation Theory, in which the focus of the explanations shifted from 

internal process in the organism to the statistical properties of the environment. The 

other theoretical antecedent of Anderson & Schooler’s model is Anderson’s (1990) 

ACT-R framework. According to ACT-R, the function of memory is to solve a database 

retrieval problem. The rational approach claims that if we can define the problem that 

the cognitive system is trying to solve, as well as what the optimal solution to that 

problem is, the behavior of the system should correspond to that optimal solution. For 

example, the elements in context constitute an optimal query to long-term memory that 

retrieves the memories that are most likely to be relevant for the given situation. 

The basic architecture assumed by the rational analysis is that information is 

stored in discrete memory structures or traces in long-term memory. Recall results from 

searching through the structures stored in long-term memory. The model assumes that 

there is unlimited capacity in long-term memory. The system tries to find the memory 

structure that is relevant for the current context; and evaluates the probability that each 

structure is needed. The order of the search processes of memory structures is related 

to their need probabilities. The system recognizes when the target structures are 

retrieved and correctly rejects structures that are not needed. 

McClelland and Chappell Model 

McClelland and Chappell (1998) proposed a rational model that is related to the 

differentiation process described in the “list strength” section of this paper, and might be 

interpreted as a specification of how that process occurs. The model rests on the 

assumption that as subjects become more familiar with an item they get a clearer sense 

of its features. This models shares with MINERVA2 and  TODAM the assumption about 

memory images as collections of features. A memory experience consists in a pattern of 

activation S across a set of feature units. Each feature of an item gets its values from 
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probabilisticaly generated 0’s and 1’s. Recognition can be characterized as the 

conditional probability of experiencing each feature, given that the “psychological 

experience” was produced by an item. The likelihood of experiencing a set of features 

given that the item is an instance of a given item µ is given by: 

p S I i
i

S
i

Si i( | ) ( ) ( )( )µ µ µξ ξ= −∏ −1 1 . (16) 

Si represents the presence (1) or absence (0) of feature i. ξ represents the 

probability of experiencing feature i in item µ. This equation means that if a feature is 

active, its conditional probability is multiplied; if it is not active, the complement of its 

probability is multiplied. Because the model assumes that subjects compute a 

subjective likelihood of the experience given an instance of item µ, Equation 16 changes 

to: 

π µ µ µ( | ) ( ) ( )( )S I w wi
S

i
S

i

i i= − −∏ 1 1 , (17)       

where π(S|Iµ) is the subjective estimate, and ω is the subjective conditional probability. 

Familiarization refines these subjective conditional probabilities. This increases the 

probability identifying familiar items because the subjective likelihood of the experience 

being produced by an item increases. It is important to note that this refinement also 

decreases the probability of incorrectly identifying familiar items; ergo it is not just a 

bias. 

Using this assumption, McClelland and Chappell (1998) proposed a single-item 

recognition memory model that consists on a collection of item detectors (one for every 

studied item). Each detector estimates the conditional probabilities for item features 

during study ad compares the to the estimates at test to make and old--new decision.  

The structure of the model in which they implement this idea consists in a two-

layer network in which the bottom layer is the feature layer in which the pattern S 

occurs. According to assumptions whose mechanism not already defined by the model, 
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there is a unique item detector in the top layer for each item. Each time a new item is 

encountered, a new item detector on the top layer is assigned to it. On the other hand, if 

an old item is repeated, the same unit used in previous presentations of the same item 

is selected. 

The item detectors decide if a pattern during test was produced by the same item 

as the one corresponding to that detector. Two hypothesis can be considered: S was 

generated by the conditional probabilities for the µth item, or it was not. The two 

hypotheses form the following odds' ratio: 

π
π

π π
π π

µ

µ

µ µ

µ µ
( | )
( | )

( | ) ( )
( | ) ( )

I S
I S

S I I
S I I

= . (18) 

The decision can be made setting a criterion, and if the ratio is above the 

criterion an “old” response is produced. Iµ is the hypothesis that S was generated by the 

conditional probabilities for the µth item; and I µ  is the hypothesis that S was not 

generated by the conditional probabilities for the µth item. Note that this calculation is 

based on subjective estimates of the probabilities, and that each detector is blind to the 

probabilities computed by the other detectors. 

Equation 16 can be rewritten as: 

π π π π πµ µ µ( ) ( | ) ( ) ( | ) ( )I I list list I list list= + . (19)  

For a real item (i.e., not a distractor) 0)|( =listI µπ and Λ= /1)|( listI µπ , where Λ 

is the subjective estimation of the number of items in the list; therefore, 

π πµ( ) ( )I list=
1
Λ

. (20) 

On the other hand )|( listI µπ  is equal to probability of the pattern being randomly 

generated. Because wa = fp1 + (1 -- f) p0  is the average probability of the units being 

active, the subjective conditional of S not being generated by a real item is given by:  
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π µ( | ) ( )( )S I w wa
S

a
S

i

i i= − −∏ 1 1 . (21) 

Since 
Λ
−Λ

=
1)( µπ I , the 

)(
)(

µ

µ

π
π

I
I  component in Equation 18 can be reduced to 

)(
)(

list
list
π

π
−Λ

; and in turn, Equation 18 can then be reduced to: 
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π
π . (22) 

The logarithmic of Equation 8 gives the estimated log-odds [λµ(S)], which is the 

basis for the decision in the model. It is approximately normally distributed; therefore, it 

can be analyzed with signal detection theory. 

The model assumes a neural network setup for its implementation, and use 

Rumelhart and Zipser’s (1986) learning rule: 

[ ])()()()1( twtStwtw iiii
µµµ −∈+=+ . (23) 

µ
iw (t) estimates the conditional probability of the ith unit being active given that 

the µth item is active. In this learning rule the weight w will increase if the ith unit is active 

(to a limit of 1) at a given time. Similarly, it will decrease to a limit of 0, if the ith unit is not 

active. ∈ is the learning rate. 

The weights between the feature nodes and the item recognition units have a 

belief distribution for the conditional probability, which McClelland and Chappell assume 

to be a Beta distributed with parameters a and b. The mean of this distribution is equal 

to a / (a + b). During learning, after observing a pattern of activation S the mean of the 

distribution is updated to (a+S)/(a+b+1), which can be transformed to: 

][ µµ
iii wSw −∈+ , (24) 
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where a/(a+b) is related to wµ 
i  and 1/(a+b) to ∈, so that the learning rate for the sth 

presentation is 

∈ =
+S n S
1

0 . (25) 

The mechanism just described yields a differentiation process like the one 

described by Ratcliff et al. (1990). The basic notion is that as item I1 is learnt the 

probability of the patterns not corresponding to I1 decreases. The log-odds distributions 

of studied and unstudied items separate because the mean of studied items increases 

at a much faster pace than its standard deviation; therefore, the response from the 

detector will be different to instances of I1 than to instances of any other item. At the 

beginning, activation is based on a log normal distribution. To add variability to the 

model, some features are not encoded and keep their original random value. 

List length effect 

In this model, the decision is based in the maximum estimated log odds. For 

distractors this maximum is a maximum across identical distributions: one distribution 

for each detector (in longer lists there are more detectors). For items, the detector 

corresponding to that item, should have a larger mean than the rest of the detectors. 

The list length effects operate on these distributions. One factor is the π
π
( )

( )
list

listΛ −
 in 

Equation 8. Recall that Λ is the estimated number of items; therefore, this term 

decreases as the number of items increases, which reduces the estimated log-odds 

from short to long lists. Another factor related to list length is the number of detectors. 

As the number of detectors grows, the maximum estimated log-odds also increases, 

inflating the false alarm rate. Since most of the items’ maximum estimated log-odds 

comes from their item detector, the number of item detectors should not have a large 

impact on the hit rate. 
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List-strength and presentation time effects 

To McClelland and Chappell, both d’ and β are important data to fit in their 

simulation. β is generally neglected by researchers because it represents criterion 

setting, which is not related to memory per se. However, not only criterion setting can 

affect β. If the mean or standard deviation of either or both signal and noise distributions 

change, β will also change. This type of change was observed in Murnane and Shiffrin 

(1991) and replicated in McClelland and Chappell’s simulations, in which ln[β] increases 

as strength increases even if the criterion has a fixed value. 

The model is also consistent with the null list-strength effect. This is because of 

the model’s differentiation mechanism. Strengthening the µth item reduces the estimated 

log-odds λµ(S) when S is not generated by item µ, reducing the false alarm rate. 

z-ROC curves 

This model has two ways to produce z-ROC curves. One is related to the wc 

criterion, and the other is by varying π(list), which could be thought of as an effect of 

changing the proportion of new and old items.  Using either method, the slopes of the z-

ROC curves are close to .8, which is the value found by a number of researchers before 

(Shiffrin & Murnane, 1991; Ratcliff, McKoon & Tindall, 1994). List strength and list length 

manipulations affect d’, but do not substantially affect the slope of the z-ROC.  This 

model is able to keep a constant z-ROC slope because changes in d’ are related to 

changes in the mean of the log-odd distribution, not to a change in the variance. There 

is currently some debate over the relationship of d’ and the slope of the z-ROC curve. 

Differentiation 

Recent data reported by Hintzman and Curran (1995) might show evidence of a 

differentiation process consistent to the one described by McClelland and Chappell’s 

model. In Hintzman and Curran’s Experiment, nouns appeared once, three times, 8 

times or 20 times during study. A judgment of frequency task followed the study phase. 
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When presented with similar words to those studied, false recognition was fairly high 

even if the related word was presented up to 20 times. A more detailed exploration of 

the data reveals that there is a U-shaped effect. False recognition of similar items 

increases as the number of presentations of studied items increases from one to three. 

However, if the studied item was repeated more than three times, false recognition of 

similar items slowly decreases. McClelland and Chappell (1998) claim that this U-

shaped performance is a consequence of the differentiation process. 

Word frequency effects 

Low frequency words produce a higher hit rate and a lower false alarm rate (see 

Balota & Neely, 1980). This has been called the frequency mirror effect. In addition, 

ln[β] is larger for low frequency words, and the z-ROC slopes are smaller for low 

frequency words. McClelland and Chappell assume that word frequency is reflected on 

the feature content of their representation. Representations of low frequency words are 

assumed to be less variable than representations of high frequency words. This is 

because low frequency words have “more distinct definitions”. The model can capture 

this assumption by setting the p0 parameter to a higher value for high frequency words. 

This model can account for the frequency mirror effect and for the shallower z-

ROC slopes for low frequency words. However, when fitting the model to a Ratcliff et 

al’s (1994) experiment, in which a list-strength and a word frequency were manipulated, 

the model predicted a strength effect on the z-ROC slopes, which did not occur in the 

data.  

REM 

At the same time as McClelland and Chappell were developing their model, 

Shiffrin and Steyvers (1997) were developing a similar memory model called Retrieving 

Effectively from Memory (REM). The agenda for REM was similar to that for McClelland 

and Chappell: to account for the null list-strength effect, the z-ROC constant slope, and 

the mirror effect.  
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In REM memory consist of images; each image is composed by a vector of 

feature values. Information about a feature is represented by positive integers. These 

values differ in their environmental base rates. The distribution of these environmental 

base rates was chosen to be geometric with parameter g: 

P[V = J] = (1 – g ) j-1 g,  j = 1,…,∞ (26) 

The parameter of the geometric distribution is related to word frequency. High 

frequency words are assumed to have more common (smaller) feature values 

generated with a gH value. Lower frequency words have less common feature values, 

generated with a gL value (gH > gL). As in MINERVA2, a value of 0 in a feature means 

absence of knowledge about a feature. 

During study, a memory image is stored for each word in the study list. However, 

the image is not an exact copy of the studied vector. For each unit of time an item is 

studied, there is a u* probability of storing a nonzero value for each feature, given that 

nothing has been stored yet for that feature. If a nonzero value is going to be stored, the 

value is going to be correctly copied from the studied vector with probability c. With 

probability 1-c, the feature value is going to be chosen randomly using Equation 26. 

Note that the correct value could be chosen by chance. 

During test, when a probe is presented, it is compared in parallel with all the 

memory images. The value of matches between the probe and each of the memory 

images is noted ignoring those features in which the memory image has a value of 0.  

For any given probe, there are two types of memory images. The first one, 

designated as d-image, include those images of items other than the probe. The second 

type of image, called s-image, is the image stored during a previous presentation of the 

probe.  

The likelihood ratio λj is calculated for each probe. This likelihood is the 

probability of finding matches for the values in which the matches were found if the 
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image was an s-image, divided by the probability of finding those matches if the image 

was a d-image. This likelihood ratio can be calculated by: 

∏
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The recognition decision is given by the odds (Φ) in favor of an old item over a new 

item: 

∑
=

=Φ
n

j
jn 1

1 λ . (28) 

If there are no biases, odds larger than 1 (Φ > 1.0) produce an “old” response. 

List length. 

All the models reviewed in this paper can predict list length effects on d’. The real 

test for the models is whether they can predict the constant slope in z-ROCs across 

different list lengths. Those models that account for list length effects on d’ modifying 

the variance of the signal or noise distributions predict large changes in the slope of the 

z-ROC. REM is not among these models. In REM, list length effects are predicted 

because each additional word in the study list increases the chance of matching 

distractor test probes. The Bayesian approach allows REM to make two important 

predictions: a constant z-ROC slope even if the variance of the log odd rises, and the 

mirror effect.   

List-strength and presentation time effects 

Presentation time effects are easily predicted by REM increasing the number of 

storage attempts for longer presentations. Storing more features increases the 

likelihood ratios for s-images, and decreases the ratios for d-images.  

Throughout this paper, the null list-strength effect has been an important test for 

models. The null-list length effect refers to performance for weak items is not being hurt 
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when strong items are in the list, compared to a pure weak list. Shiffrin et al. (1990) 

proposed a differentiation mechanism for SAM. The structure of REM produces a 

differentiation mechanism automatically: stronger items have more features stored, 

making them less likely to be confused with the test word when the image of such 

strong item is a d-image. As in list–length, the Bayesian approach allows REM to predict 

a mirror effect and a small variation in the slope of the z-ROC functions regardless of 

strength or presentation time.   

Word frequency effects 

Low frequency words are easier to recognize than high frequency words. REM is 

able to make the correct prediction about word frequency effects on recognition 

assuming that the distribution of feature values is different between low and high 

frequency words. High frequency words are assumed to have features with more 

probable values than low frequency words. This makes low frequency words harder to 

confuse or misidentify. Again as mentioned before, the Bayesian approach allows REM 

to predict a mirror effect, and a constant slope of the z-ROC curves. 

A word on optimality 

An important difference between global memory models and REM is that the 

former were mechanistic models that were not concerned with optimality. On the other 

hand, in REM optimality is assumed beforehand, and performance is based on 

knowledge by the subject of the distribution of psychological states. Subjects are 

supposed to use this knowledge in an optimal way when responding in a recognition 

task. A related approach to the one taken by REM is taken by McClelland and Chappell, 

with the difference that subjects do not have access to the real likelihood, but to flawed 

subjective estimates. This difference between the two models does not lead to 

differential predictions on the effects of the manipulations with which this paper is 

concerned. Future research could test these two competing models generating 

differential predictions. 
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Time course of processing  

The two new models that have been described are able to account for some of 

the phenomena that global memory models could not predict. However, there is an 

issue that has not been addressed: the time course of memory processes. These new 

models are still silent about RT measurements of performance. An adequate memory 

model should be able to account for probabilities of response as well as mean RT and 

even RT distributions.  

A result that is problematic for rational memory models is the one reported by 

Gronlund and Ratcliff (1989). They found that associative information is available after 

single item information is available. The two models, McClelland and Chappell, and 

REM, assume the same mechanism for associative and item information. Only a 

handful of memory experiments deals with time course issues; however, the timing of 

memory process could be another ground to test memory models. 
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