
Abstract
Some aspects of the theory of transport are elucidated by an
stochastic approach; we derive Fick’s second law, and discuss
the relevant points of the theory of Brownian motion, which
allow to determine Avogadro’s constant, N0. At the end we
use the formulation of the paper to estimate N0.

Introduction
One of the main purposes of this paper is to introduce
students of physical chemistry into the fascinating world of
random processes (more generally called stochastic proces-
ses). This practice is an attempt to remove the ‘‘mental
barrier’’ that time dependent (non-equilibrium) processes are
esoteric useless applications of pedantic mathematics. As
chemists we study time processes in the traditional courses
of chemical kinetics; however, often the time dependence is
washed away by integrating empirical rate laws, or making
assumptions of equilibrium or formations of long time steady
states. Even though these approximations are very useful, it
is important to keep in mind that they are only limiting cases.

Since this is an introduction to the subject of non-equili-
brium addressed to chemistry majors, I have chosen a topic
of high repercussion in chemistry, Brownian movement. That
is, the random motion that small particles1 perform when
dispersed in a fluid, or a solid.2 This type of motion is named
after the British naturalist Robert Brown (1828), who was the
first scientist to realize that the nature of such motion is
physical rather than biological as many of his colleagues
thought.

Though an excellent experimentalist, Brown lacked the
right theoretical explanation for his observations. Indeed,

brownian motion remained in oblivion for over fifty years
until two brilliant young theorists, Einstein (1956) and Smo-
luchowski (1908), explained it fully. However, the experi-
mental figure behind the phenomenon of brownian motion
is the French physicist Perrin. It was Perrin (1908, 1914) who
showed the validity of Einstein’s theories, and consequently
proved univocally the existence of atoms.3 Furthermore,
Perrin’s experiments give an estimate of the value of Avoga-
dro’s constant. In what follows we derive some of Einstein’s
results from a stochastic point of view. We also discuss some
of the results of Einstein’s theory and describe the experi-
ments of Perrin. It is shown how these classical studies allow
to determine the value of Avogadro’s constant. Finally, in the
concluding remarks we attempt to connect theory with re-
ality by actually computing Avogadro’s number using expe-
rimental and theoretical results from the literature. We
strongly encourage the curious student to try to follow the
derivations by himself or herself.

Einstein’s statistical theories
Einstein and Smoluchowsky are the first scientists who ex-
plained Brownian motion from a purely physical point of
view. In this section, we derive a fundamental equation in
the theory of transport from a strictly microscopic point of
view. We perform such task starting from a discrete, one
dimensional lattice. Then we write a balance for the prob-
ability of finding a particle at a given lattice point. One
should notice that probability balances are completely equi-
valent to mass balances. The difference between one another
is a multiplicative constant, i.e. the total number of particles
diffusing in the liquid.

Figure 1 shows a discrete, one-dimensional lattice. Par-
ticles can travel along the sites of the lattice, making one-step
jumps, but with complete freedom to move right or left. To
keep things simple, we assume that the rates of transition
among sites of the lattice are constant. We denote such rates
with the letter a.
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1 For example colloidal dispersions of metals; that is, clusters of atoms
of a metal enclosed by long molecules with a polar group facing the
metal, and a non-polar end sticking out of the cluster.

2 Although in this paper we only talk about dispersion in fluids, it is
important to mention that the phenomenon of dispersion in solids
is fundamental in the study of the storage of nuclear wastes, where
radioactive particles can diffuse through the walls of their containers.

3 Perrin’s experiments destroyed the old school of thought that atoms
are mere mental artifacts to explain cleverly some experimental obser-
vations. This old school was lead by the eminent French physicist
Duhem and the equally famous German physical chemist Ostwald.
4 In a discrete time random balance of probability, particles always jump
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Balances of probability
To study the balance of probability, we take time as a
continuous variable. One could take it as a discrete one, but
the analysis in such case gets messier. Furthermore, in the
limit of our interest both balances are entirely equivalent. Let
the time for a transition be the infinitesimal quantity dt. The
probability of a transition between adjacent sites is the pro-
duct

a dt

Figure 2 shows any three adjacent sites of the lattice.
Notice that particles can never be located in between sites of
the lattice. The question one wishes to answer is what the
probability of finding a particle on site y at a time t + dt is.
We denote such probability by P(y, t + dt). Since the time for
a transition is dt, the balance of probability looks like

P (y, t + dt ) = 

= a dt P (y + ∆y, t ) + a dt P (y − ∆y,t ) + (1 − 2a dt )P(y, t) (1)

The first two terms on the right hand side of equation (1)
come from the respective forward and backward transitions
from sites y − ∆y and y + ∆y. The last term on the right is the
probability for the particle of staying on site y. In other words,
it is a conservation equation.

Now we go to the limit at which the number of sites of
the discrete lattice, N, increases to infinity. Consequently, the
space between site s, ∆y, decreases to zero and the transition
rates, a, increase to infinity.

The Limit
Since a → ∞  and ∆ y → 0  it is reasonable to expect that their
product remains constant, in the limit. Let us denote the limit of
a (∆y)2 by D. So arranging equation (1) one gets

 lim
N,a,v → ∞;∆y, dt → 0

             
P (y, t + dt ) − P (y, t )

dt
 = 

 lim
N,a,v → ∞;∆y,dt → 0

              
a (∆y)2 [P (y + ∆y,t ) + P (y − ∆y,t ) − 2P (y,t )]

(∆y)2 (2)

This is an equation in finite differences. One should
remember that, in the limit of infinitesimally small differen-
ces, first differences become first derivatives, second order
differences become second derivatives, and so on. There-
fore, the final limiting equation is

(3)

Equation (3) is Fick’s second law of diffusion (Noggle,
1989), a partial differential equation. Solving (3) is out of the
scope of this paper; it can be found to be

(4)

by using Fourier transform techniques (McQuarrie, 1976).
Instead of learning how to solve (3), and similar equa-

tions, we use an alternative method which still allow to grab
good physical chemical insight, the method of moments
(Aris, 1956).

Temporal variation of the Moments.
The Physical Connection
It is shown that the link between the equations above with
the physical world is given by the moments of the function
P(y, t)

(5)

The function P(y, t) in Eq. (5) is what statisticians call a
density function of probability (Spiegel, 1975). It is a function
normalized by the condition

(6)

which is nothing but a conservation condition. Physically,
Eq. (6) implies that, at any time, the sum of all the contribu-
tions to the probability of finding particles is equal to the total
normalized probability.

Let us visualize experimentally all what has been said
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Figure 1. Discrete one-dimensional lattice.

Figure 2. Any three adjacent sites of the lattice. The a’s represent transition
rates.
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Figure 3. Experimental appara- 
tus. M contain emulsion, F and 
C contains pure water. 
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above with equations. Think of a long column with a negli- 
gible cross section compared to its length, Figure 3. There- 
fore diffusion of particles along the radial direction can be 
neglected as a good approximation. Flask M contains a 
globular microemulsion.~f one opens simultaneously B and 
V, for a very short period, then a "plug" of oil droplets enters 
the capillary C. These condition can be taken as the initial 
condition of the experiment. Observing the oil droplets 
diffise longitudinally along the capillary C one could ob- 
serve the random motion of these particles, product of the 
coilisions with the molecules of the bulk phase (water). If we 
could measure experimentallyfi the number density of 
the droplets, as a function of time, the time evolution of the 
systern would be completely described. In principie classicai 
mechanics allows to find such evolution; however, in practi- 
ce it is impossible to keep track of the dynamic behavior of 
so many particles. So we need an alternative approach. 

Since the particles go to the left and right with equal 
likelihood, the average < y  > is zero. The important quantity 
in this case <y >Il2, which we relate latter to some measu- 
rable quantities. 

In order to compute the second moment, < >, we use 
a technique called the method of moments (Aris, 1956). So 
multiplying Eq. (3) by y", and integrating over the whole 
range of y one finds 

I I 1 1  

I I 

a P ( A d y  = q- y" a bn a t  - a y2 Y 
4 

using the definition for moments, Eq. (5), and integrating by 
parts one gets 

5 A microemulsion is a stable temafy systern of one phase (oil or water) 
dispersed on a bulk phase (water or oil). The interface between the two 
faces is a third cornponent (surfactant) residing at the boundary be- 
tween the oil and water, whose function is to reduce the surface tension 
between phases and therefore stabiiize the systern. 
6 By experiments of refractornetfy, for exarnple. 

C 

d < y n >  
dt 

= n(n-1 )D< > 
(7) 

The temporal variation of the second moment is obtai- 
ned by integrating Eq. (7), with respect to time when n =2, 
i.e. 

<$> = 2 Dt (8) 

Equation (8) is the key relation of all this section. Notice 
that the advantage of using the method of moments is that 
one does not need the actual functional form of P(y, t) to find 
<y' >. 

To fmish this section, we point out two important rela- 
tions. They allow one to do calculations of Avogadro's 
constant. The first quantity is the square root of the second 
moment 

1 1 
h , = ( < $ > ) 5 = ( 2 ~ t ) 2  (9) 

The constant D can be identified with a diffusion coeffi- 
cient, by either experiments measuring the root mean square 
of the displacement versus time. Or by straightforward, 
empirical dimensional analysis. At any rate, one needs an 
expression for D. In order to attain this task, we need to 
combine Stokes hydrodynamic theories (Noggle 1989) with 
Einstein theory of brownian motion. On Figure 4 we depict 
two adjacent layers y and y + Ay. The osmotic force between 
the two layers, as a function of the coordinate y, is equai to 

A Pom Fom = - 
AY 

where Pom is the osmotic pressure. We use now Vant' Hoff's 
formula for the osmotic pressure (Noggle, 1989) 

P- = RTM 

T being the absolute temperature and M the number of 
moles of droplets per unit volume at a height y. Then F,, 
becomes 
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Fosm = −R T 
dM
dx

From Stoke’s law (Noggle, 1989), the force of friction
exerted on a particle to displace it from layer y to layer
y + ∆y (or viceversa) is

Ffric = −fv

where f stands for the friction coefficients, estimated by
Stokes to be f = 6π η r, for spherical particles; η is the visco-
sity of the fluid (water in our case). Moreover, v is the constant
velocity attained by the particle in its migration.

One can write

v = − 
Ffric

f

In order to identify Ffric with the osmotic force Fosm, one
needs to consider that the force Fosm is actually divided
between M N0 molecules.7 So one effectively has the velocity
modified by a factor M N0, i.e.

v = − 
Fosm

MN0 f

or

Mv = -- 
Fosm

N0 f
 = R

T
N0 f

 
dM
dx

The units of the quantity on the left hand side correspond
to a flux. Additionally, the right hand side is a constant times
a first derivative of concentration with respect to position. So

one can identify this expression with Fick’s first law of
diffusion, and therefore conclude

D = 
R T
N0 f 

Substituting f  in the denominator, and using Eq. (9) we
finally obtain

N0 = 
t

λy
2 ⋅ 

RT
3 π η r (10)

t is the time interval for which we make the observation, r is
the radius of the suspended oil droplets, η is the coefficient
of viscosity of the liquid, in our case water. R is the universal
gas constant, and T is the absolute temperature at which the
experiment is performed.

We have developed all the theoretical background ne-
cessary for our purposes. Now we move to the practical
world of experiments. There are complicated experimental
details that our discussion so far has not considered, i.e. how
to make oil droplets with the same radius, and how to
determine that radius. The next section deals with these
issues.

The Experiments of Jean Perrin
Jean Perrin is the outstanding experimentalist in the history
of Brownian Motion. His contribution to science is funda-
mental since his experiments proved the existence of atoms.

The experiments
The experimental setup of Perrin’s experiments is schemati-
zed in Figures 4 and 5. One starts with an emulsion resin/wa-
ter. Because of the gravitational field, the number of droplets
per unit volume (number density), n, varies as a function of
height. This is schematized in Figure 4 by two adjacent
‘‘layers’’ y and y + ∆y. One can notice that the higher the
distance the smaller the number density.

Since the two layers y and y + ∆y, in Figure 4, have
different number densities, there must be an osmotic pressu-
re from the most concentrated to the least concentrated.
From the kinetic theory of gases (Noggle, 1989) the osmotic
pressure is equal to 2/3 nW; where n is the number density
and W is the mean kinetic energy. The difference in osmotic
pressure between the two layers y and y + ∆y then is

Posm = 
2
3

 W ∆n ,

where ∆n is equal to the difference in number density
between the layers. Therefore the osmotic force is equal to
the product of the area of the cross section, s, of the column
in Figure 4 times Posm. That is

7 Remember that M is the molarity, i.e. the number of moles of droplets
per unit volume. So the total number of droplets is M times Avogadro’s
number, N0.
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Figure 4. Perrin’s vertical column.
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Fosm = 
2s
3

 W ∆ n

On the other hand, the weight of the droplets need to be
corrected for the ‘‘push’’ that buoyancy exerts on them.
Calling ρdrop and ρwater the densities of the droplets and the
solvent, and using formulas from elementary physics, we find
the correct gravitational force to be

Fgrav = ns ∆hvdrop (ρdrop − ρwater ) g

where vdrop is the volume of the droplet and g is the constant
gravitational acceleration.

At equilibrium

Fosm = Fgrav

so one gets

2
3

 W 
∆n
n

 = ∆h 
4
3

 πr3 (ρdrop − ρwater) g

integrating last equation from (h0, n0) to (h, n) one finds

2.303 W  log 
n0

n
 = 2 π r3 h (ρdrop − ρwater ) g (11)

for spherical droplets of radius r.
When one substitutes in Eq. (11) the kinetic energy of

a monoatomic gas, 2
3

  
RT
N0

, a calculation of Avogadro’s constant
N0 is possible. Notice that the experimentally difficult quantities
to determine in Eq. (11) are the number densities n0 and n.

What Perrin did to determine number densities
Perrin (1908, 1914) and his students measured the density
using a procedure that we summarize as follows

a) Form a uniform emulsion using the method of fractio-
nal centrifugation.

b) Determine the radius of the particles with a microscope.
c) Use a very small sample of emulsion, and analyze it

in a microscope, Figure 5. Varying the distance of the objec-
tive lens one can count (by taking instantaneous pictures) the
number density as a function of height by just considering
particles in focus. In other words, neglect the particle out of
focus.

The best value that Perrin (1908) obtained for Avoga-
dro’s number was:

N0 = (6.5 ± 0.6) × 1023

Conclusions
We have analyzed a phenomenon which has a fundamental
connection with the microscopic world of atoms and mo-
lecules.

The key point of the paper comes in our discussion about
the determination of Avogadro’s number by Perrin. Some-
thing really relevant to notice is the almost ‘‘symbiotic’’
relation that theoretical thinking has with the experimental
world. For example, Perrin used the kinetic theory of heat to
measure N0 .

We end up this section making a calculation of N0 using
constants from three different sources. We evaluate

(12)

for the diffusion of atoms of Argon in water when t is equal
to one second. The diffusion coefficient at 298 K is (Lide,
1991)

D = 2.00 × 10−5 
cm2

s

The viscosity of water at 298 K is (Noggle, 1989)

ηwaterr = 8.937 mp

We take the atomic radius of Ar from Oxtoby’s book (Oxtoby
et al., 1990)

r  = 0.97 Å

For an interval of one second, we get using Eq. (9)

λy = 4.472 × 10−3 cm

and

N0 = 15 × 1023

We obtain the correct order of magnitude for Avogadro’s
number, but a really bad precision. That is not so tragic
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Figure 5. Diagram representing Perrin’s experimental setting. M is a micros-
cope and s is a sample of emulsion.
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considering that we used data from several sources; also the
atomic radius of Ar was taken from X-ray experiments,
which analyze the solid structure of Ar and neglect solvation
effects in water. Furthermore, Eqs. (9) and (10) might not hold
for something as light and small as Ar.

We believe the methodology and concepts introduced
in this paper could be well used by some instructors in their
lectures.

Literature cited
Aris, R., Proc. R. Soc. London Ser. A235, 67-77, 1956.
Berry, R.S., Rice, S.A., Ross, J., Physical Chemistry, John

Wiley, New York, 1980, part two, Chapter 20.
Brown, R., Phil. Mag., 4, 161-173, 1828.
Einstein, A., Investigations on the Theory of Brownian Movement;

Dover: New York, 1956.
Lide, D.R., Ed., Handbook of Chemistry and Physics; CRC:

Boston, 1991.
McQuarrie, D.A., Statistical Mechanics, Harper and Row,

New York, 1976.
Noggle, J.H., Physical Chemistry, Scott, Foresman and Co.,

Boston, 1989, Chapter 9.
Oxtoby, D.W., Nachtrieb, N.H., Freeman, W.A., Chemistry:

Science of Change, Sauders College Publishing, Orlando,
FA, 1990, Chapter 18.

Perrin, J., Ann. de Chim. et de Phys., 1-114, 1908.
Perrin, J., Comptes Rendus, 158, 1168-1171, 1914.
Spiegel, M.R., Probability and Statistics, Schaum’s Outline

Series, McGraw-Hill, New York, 1975, Chapter 3, p. 79.
Smolochowski, M.V., Ann. d. Phys. 25, 205, 1908. 

PROFESORES AL DÍA

III Jornadas de la Enseñanza Universitaria de la Química

10 al 12 de noviembre de 1997
Complejo Vaquerías-Huerta Grande-Córdoba, Argentina

Organiza: AQA- Asociación Química Argentina - Grupo de Especialistas Universitarios 
en la Enseñanza de la Química
UNC - Universidad Nacional de Córdoba - Fac. de Ciencias Agropecuarias -
Fac. de Ciencias Exactas, Físicas y Naturales
UTN - Universidad Tecnológica Nacional - Facultad Regional Córdoba

Contenido:  Conferencias plenarias  Mesas redondas
 Comunicaciones libres  Talleres de trabajo

Costos: Fecha Inscripción Alojamiento 3 días pensión
completa en Vaquerías

hasta el 30/4/1997   $ 30 $ 120
hasta el 30/6/1997   $ 50 $ 150
desde el  1/7/1997   $ 70 $ 180

Presentación de resúmenes: fecha límite 30/6/1997

Informes: Ing. Beatriz Maroto, UNC - Fac. de Cs. Agropecuarias
CC. 509 (5000) Córdoba - Argentina, Fax: +54 - 51 - 334118
E-mail: bmaroto@agro.uncor.edu

hector@sa.frc.utn.edu.ar
hector@utnfrc.edu.ar

 

Julio de 1997 129




