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ABSTRACT
This study investigates the dynamics of equity networks in Mexico from 
2018 to 2023, focusing on the impact of the COVID-19 pandemic. 
Methodological steps include calculating stock returns, estimating 
annual garch models, constructing lower-tailed dependency matrices, 
and forming networks based on these matrices. The characteristics of 
the resulting networks are described. In addition, 10,000 Erdos-Reyni 
simulations are performed to estimate gnar models up to order two, 
selecting the best estimates according to aic, bic, and llk criteria. The 
predictive performance of gnar models compared to univariate ar 
and var models is evaluated. These stages help to better understand 
the interconnection between Mexican financial markets, offering 
valuable insights for risk management and decision-making.
Keywords: Multivariate time series, networks, garch, gnar.
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ANÁLISIS DE REDES DEL MERCADO MEXICANO ACCIONARIO
RESUMEN

Este estudio investiga la dinámica de las redes accionarias en Mé-
xico de 2018 a 2023, focalizándose en el impacto de la pandemia 
de COVID-19. Los pasos metodológicos incluyen el cálculo de 
rendimientos accionarios, la estimación de modelos garch anua-
les, la construcción de matrices de dependencia en colas inferiores  
y la formación de redes basadas en estas matrices. Se describen las 
características de las redes resultantes. Adicionalmente, se realizan 
10,000 simulaciones Erdos-Reyni para estimar modelos gnar hasta 
orden dos, seleccionando las mejores estimaciones según criterios 
aic, bic y llk. Se evalúa el desempeño predictivo de los modelos 
gnar en comparación con modelos ar y var univariados. Estas 
etapas ayudan a comprender mejor la interconexión entre los mer-
cados financieros mexicanos, ofreciendo información valiosa para 
la gestión de riesgos y la toma de decisiones.
Palabras clave: series de tiempo multivariadas, redes, garch, gnar.
Clasificación jel: G01, G32, C22, C51, C63.

1. INTRODUCTION

The interconnectedness and dynamics of financial markets are 
central economic and financial research themes. Equity networks, 
which represent the relationships between different securities and 

assets, offer a unique perspective for understanding the complexity and 
interdependence of financial instruments. This study focuses on equity 
networks in Mexico, exploring their evolution from 2018 to 2023, with 
a particular focus on the impact of the COVID-19 pandemic and the 
search for possible causes of contagion among the different components 
of the stock market.

In recent years, Mexican financial markets have experienced signif-
icant fluctuations influenced by domestic and international economic 
and geopolitical events. The COVID-19 pandemic, which began to affect 
globally in 2019 and continued to impact public health and econom-
ic stability in the years that followed, has been a crucial factor in the 
evolution of markets. Understanding how these dynamics are reflected 
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in shareholder networks is essential for anticipating risks, improving 
decision-making, and strengthening the financial system’s resilience.

The main objective of this study is to describe and analyze the share-
holder networks in Mexico from 2018 to 2023, paying particular attention 
to the influence of the COVID-19 pandemic on the dynamics of these 
systems. It seeks to identify patterns, structural changes, and possible 
contagions between different sectors or companies. To achieve this 
purpose, various methodologies will be employed, including garch 
(Generalized Autoregressive Conditional Heteroskedasticity) models, 
copula measurements, and network construction techniques, as well as 
estimation of global simulation-based gnar (Generalized Autoregres-
sive Network) models, to explain the dependence between the different 
actions and contrast such models with Autoregressive Vectors (var) and 
univariate time series models.

The remainder of this paper is divided as follows. The second section 
briefly reviews the literature on networks applied to financial markets. 
Subsequently, the different techniques of time series analysis are discussed. 
This section will detail the application of garch models to analyze the vol-
atility of equity returns, allowing the identification of periods of increased 
risk and the assessment of the persistence of shocks in the market that will 
describe the marginal behavior of the stocks under study. Copulas will 
also be used to model the nonlinear dependencies between the returns 
of different actions. This will facilitate the understanding of extreme 
relationships and the assessment of co-mobility in times of crisis. This 
allows us to describe the construction of financial networks. The section 
will address how equity networks will be constructed, using similarity 
measures between stock returns. Approaches based on correlations and 
covariances and more advanced measures such as mutual information will 
be explored. Subsequently, the gnar models used in the estimation will be 
described. In the fourth part, details will be provided on the data used, 
the temporal frequency of observations, and the selection of assets. The 
results of the garch and copula models will be presented, highlighting 
patterns of volatility and dependencies between returns. The construction 
and evolution of the shareholder networks will be analyzed in the defined 
time context, and the estimation of the simulation-based models. The 
paper’s final section will summarize the main conclusions derived from 
the analysis of shareholder networks in Mexico during the study period.
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2. LITERATURE REVIEW

Research in risk analysis and financial networks has led to several sig-
nificant studies employing various techniques and focusing on different 
markets. Generally, studies can be grouped according to the techniques 
used or the markets studied. Several authors have used graphical models 
and network approaches to analyze the interconnectedness of markets and 
financial institutions. These studies have shed light on the structure of 
interdependence and the contagion of systemic risk.

Among the works that involve models based on graph theory and 
network approach, we can highlight that of Wainwright and Jordan 
(2007). The authors present a variational approach to address probability 
calculation problems in probabilistic graphical models. This work has 
laid the foundations for using network models to represent and estimate 
complex relationships in financial markets. Giudici and Spelta (2016) apply 
Gaussian graphical models to study interconnections in international 
financial flows. They also propose Bayesian graphical models to analyze 
networks of financial interdependence. Giudici, Sarlin and Spelta (2020) 
base their research on data from the Bank for International Settlements 
and reveal the existence of clusters of core countries in the spread of 
risk. Their approach identifies distinct groups of countries, providing 
valuable insights into the contagion of systemic risk.

Clemente, Grassi and Hitaj (2021) reveal the role of network structure 
in financial markets in improving the portfolio selection process. Its 
network-based approach has shown that optimal portfolios primarily 
comprise peripheral assets, effectively balancing return and risk. 

How financial networks are built and interconnected is essential. 
Among the fundamental approaches is the construction of networks 
based on the correlation and partial correlation of asset returns, which 
have also been widely used. Tse, Liu and Lau (2010) constructed com-
plex networks to study the correlations between closing stock prices in 
U.S. markets over two periods. This innovative approach has revealed 
the structure of interdependence in the U.S. stock market. Similarly, 
Kennett et al. (2010) propose building financial networks based on 
the partial correlation of the returns of stocks traded on the New York 
Stock Exchange. Their approach reveals the interdependencies between 
different market sectors. In Millington and Niranjan (2020), correlation 
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and partial correlation networks are explored in the context of the S&P 
500. Centrality measures and community detection provide valuable 
insights into market structure.

Shen and Zheng (2009) investigate the universal structure of inter-
actions in financial dynamics. Their analysis of the cross-correlation 
matrix of price returns reveals differences in the interdependence be-
tween the Chinese, U.S., and Indian markets. On the other hand, the 
network construction approach based on tail dependency (used in this 
work) has allowed the analysis of extreme fluctuations. Wen, Yang and 
Zhou (2019) focus on the tail dependency structure in the forex market.

 The construction of upper and lower tail dependency networks reveals 
the importance of considering different topological features in market 
situations. On the other hand, Härdle, Wang and Yu (2016) propose 
a semi-parametric measure to estimate the systemic interconnection 
between financial institutions based on tail events. Their network anal-
ysis highlights different groups’ roles in the financial industry during 
the financial crisis. Wang and Xie (2016) analyze the tail dependency 
structure in the foreign exchange market using upper and lower tail 
dependency networks. Their approach highlights the importance of 
considering extreme interactions in the market. 

Huynh, Foglia and Doukas (2022) study focuses on the risk of tail 
contagion in the Eurozone. Their research highlights connectivity and 
risk transmission between different sectors, providing crucial risk man-
agement and decision-making insights. In the Mexican context, Treviño 
(2020) aims to study and characterize the interdependence structure 
of the Mexican Stock Exchange (bmv) from 2000 to 2019. This study 
provides an overview of the interconnecting network of stocks in the 
bmv using correlation and concentration matrices.

Recent research on the interconnection between financial markets 
through network analysis has been carried out by Xu and Li (2023) and 
You et al. (2024). The first examines the relationship between partici-
pation in international trade and the connectivity of stock markets in 
eleven major economies, using the input-output network approach and 
the Diebold and Yilmaz Connectivity Index. The second explores the 
spillover effects of foreign capital on the Chinese stock market, high-
lighting a significant connection with global markets, with the US, Hong 
Kong, and the UK as the primary transmitters of risk.
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This study also identifies other global events, such as Brexit and the 
US-China trade war, as sources of contagion in addition to COVID-19. 
In a similar vein, Wang, Wen and Gong (2024) analyze systemic conta-
gion from the oil market to financial markets, highlighting a significant 
increase during oil crises.

Finally, Lorenzo-Valdes (2024) uses regular vine copulas to evaluate 
the dependence between the US and Latin American financial markets 
during COVID-19 and in subperiods (pre-COVID, COVID, post-COV-
ID), concluding that the contagion routes have the US as the root node.

3. METHODOLOGY

The following steps are performed to assess interdependence in the 
Mexican stock market. First, a time series of stock returns is construct-
ed, and an individual model is filtered for each with an equation for the 
conditional mean of returns and an equation for the variance of returns. 
As a result, a time series of standardized residuals are obtained.

Subsequently, standardized residuals measure the interdependence 
between the different actions. For this purpose, the dependency on lower 
tails is used. A measure emerged, initially, from the concept of copulas, 
and a matrix of this measure is constructed containing the measure 
between each pair of actions. Thirdly, a network is built between the 
actions, taking into account a threshold of the probability of tail de-
pendence considered. A descriptive network analysis is performed for 
each study year from 2018 to 2023.

3.1. The Mexican stock exchange 

The bmv is a financial institution that operates as a secondary market, 
i.e., a market in which investors can buy and sell financial securities that 
have already been issued. Its primary function is to facilitate trading 
financial instruments, such as stocks, bonds, and other related products, 
allowing investors to buy and sell these assets against each other.

In the bmv, 143 companies are listed, of which only those that have 
had regular operations in recent periods were taken, leaving 101 shares. 
From these, daily closing prices (P) were taken and continuous returns 
per period (r) were calculated: 
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1ln lnit it itr P P −= −

Where i is the stock listed on the bmv, and t is the time in days.

3.2. Behavior of marginal distributions

The model that describes the behavior for marginal distributions is an 
ar(1)-tgarch (1,1) model. 
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The perturbations εit are distributed as an asymmetric standardized 
Student’s t, and the degrees of freedom are estimated (ν). This asym-
metric probability function is constructed following the methodology of 
Fernandez and Steel (1998). The relevance of this methodology is that it 
allows the transformation of symmetric distributions into asymmetric 
distributions in a straightforward way, for which it is only necessary to 
use a scalar ξ, i.e., a skewness parameter, to make this transformation. 
Particularly here, it transforms a Student’s t-density distribution into an 
asymmetric Student’s t-distribution.

Mathematically, this transformation is proposed considering the 
Student’s t density function with zero mean, variance one, and degrees 
of freedom ν, where ν > 2. The proposed methodology introduces 
asymmetry in the density distributions using inverse scale factors in 
the positive and negative values of the perturbations. These factors are 
defined by the scalar ξ> 0 (asymmetry parameter). Precisely, if this 
scalar is fixed, the density function for a variable xt that is distributed 
following an asymmetric Student’s t-density distribution is defined as:
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is an indicator function that takes the value of one if condition A is given. 
In the case of equation [3], A is the set of non-negative values of xt in 
the first case and negative values of xt in the second one.

Function [3] generalizes the Student’s t-density distribution based 
on the asymmetry ξ (scalar) parameter. If ξ = 1, the resulting function 
is the symmetric Student’s density t-distribution. If ξ ≠ 1 the resulting 
function is the asymmetric Student’s t-density distribution. Particularly, 
if ξ < 1, the function is a left-skewed distribution; if ξ > 1, the function is 
a right-skewed distribution. Therefore, the bias of function [3] depends 
on the values of ξ.

Model [2] presents an equation for returns that, in this case, is de-
fined as an autoregressive process of order one in which the returns of 
the period depend on the same returns in the previous period and an 
equation for variance (volatility squared) that serves to describe the 
dispersion of continuous returns (in logarithms). 

The inclusion of volatility in the models makes it possible to describe 
specific typical characteristics of financial time series, such as (i) the 
probability of having extreme returns higher than those that would  
be assumed if a normal distribution is assumed, i.e., the probability dis-
tribution of returns has wider tails than a normal distribution, known as 
excess kurtosis; (ii) the leverage effect, when there is a negative correlation 
between performance and volatility, in the sense that when performance 
falls, volatility increases, and (iii) the time relationship of volatility that 
forms clusters, i.e. volatility in a period depends on volatility in previous 
periods. To capture these characteristics, a tgarch (Threshold General-
ized Autoregressive Conditional Heteroskedasticity model) introduced 
by Zakoian (1994) and Glosten, Jagannathan and Runkle (1993) is used 
to estimate the volatility equation as an extension to the arch models, 
initially developed by Engle (1982) and generalized by Bollerslev (1986).

3.3. Copulas and dependency measures

The dependency structure between variables can be modeled by a mech-
anism that expresses the cumulative distribution function (cdf) from 
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the marginal distribution functions (mdf). A copula C(u1,u2,…,un) is 
an fda for n uniform variables over the unit interval. Sklar’s theorem 
(1959) says that if we take uj = Fj(xj) for j = 1,…,n as the fda of a uni-
variate continuous random variable Xj, then C(F1(x1),F2(x2),…,Fn(xn)) 
is a multivariate distribution function for X(X1,X2,…,Xn) with marginal 
distributions Fj, j = 1,…,n. Conversely, if F is a continuous multivariate 
fda with univariate marginals, Fj, j = 1,…,n, then there exists a single 
multivariate copula C such that F(x1,x2,…,xn) = C(F1(x1),F2(x2),…,Fn(xn)).

This allows the study of the dependence of random variables based 
on their marginal distributions. The properties of copulations have been 
studied by several authors, most notably the work of Nelsen (2006). 
First, they are invariant to strictly positive transformations of random 
variables. The second property is the consistency between the calcula-
tion of the concordance measures and the parameters of the copulas. 
Finally, the third property consists of the treatment that can be given to 
asymptotic tail dependence. 

Considering the bivariate case, we want to measure the dependence 
between two financial assets. This can be done by calculating the asymp-
totic dependency on the distribution’s tails. That is the measurement of 
the behavior of random variables during extreme events. Thus, measures 
emerge that indicate the probability of an extreme increase (decrease) in 
the returns of one financial asset, given that there is an extreme increase 
(decrease) in another financial asset. By the above, the dependency 
coefficients in lower λl and upper λS tails are defined as:
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There is tail independence if the values in [4] are zero, dependency 
if the values are between zero and one, and perfect dependence if they 
are equal to one. Schmidt and Stadtmüller (2006) propose a set of non-
parametric estimators for the upper and lower tail coefficients. This 
paper uses these estimators to find a matrix of dependency coefficients 
in lower tails for stock returns.

[4]
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3.4. Graphs and networks

Network building is used to model and analyze various financial and 
economic phenomena, allowing for a better understanding of the re-
lationships and connections between different financial and economic 
variables. A graph is a data structure composed of nodes (points) and 
edges (connections) representing and visualizing the relationships be-
tween different financial elements. Nodes can represent entities such as 
companies, financial assets, investors, markets, or economic variables, 
while edges denote their connections or relationships.

In this sense, nodes can represent financial assets, and edges can in-
dicate correlation, volatility, or other risk metrics between them. They 
can help us understand how companies are connected and how events 
in one part of the market can affect others. Therefore, it is essential 
for understanding the complex interactions in financial markets and 
making informed decisions. It enables financial professionals to iden-
tify opportunities, mitigate risks, and optimize investment and asset 
management strategies.

In financial networks, there are several essential measures that ana-
lysts and financial professionals use to assess the structure and dynam-
ics of the network. These measures provide valuable insights into the 
interconnectedness of financial elements and can be critical for risk 
management, investment decision-making, and understanding the 
financial system’s stability. 

In the case of networks composed of financial actions, some of the 
most relevant measures would be:

 The measure of density in the context of networks refers to the propor-
tion of connections in a network relative to the total number of possible 
connections. In other words, the density of a network quantifies how 
interconnected nodes are compared to the total number of connections 
that could exist. Density is expressed as a value between 0 and 1, where 
0 indicates no connections, and 1 indicates all possible connections.

 The degree of a node in a financial action network represents the num-
ber of connections or links to other actions in the set. In this context, 
the grade of a stock indicates how many other stocks are related to it 
through correlations, reversals, or market movements.
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 The measure of modularity in financial networks is used to assess the 
modular structure of a financial system, i.e., how nodes (typically finan-
cial institutions) are divided and grouped into more densely connected 
communities or modules than the rest of the system. Modularity is a 
measure that quantifies the quality of this partition of the network into 
communities. A high modularity indicates the network is well divided 
into distinct communities, while a low modularity suggests a more ho-
mogeneous network. The measure of modularity in financial networks 
provides insight into the structure of the network and how financial 
institutions are organized into communities, which can be crucial for 
understanding the stability and resilience of the financial system as a 
whole.

 Betweenness Centrality: In a network of financial stocks, this measure 
can indicate which stocks act as critical intermediaries in the relation-
ships and flows of information among other stocks.

These measures are critical to understanding the structure and be-
havior of financial equity networks, which can help investors, analysts, 
and portfolio managers make informed decisions and better manage 
risk in a stock market context.

3.5. Global Generalized Autoregressive Network Model-α

Additionally, a simulation analysis is performed to find the network by 
year that best fits a global Generalized Autoregressive Network Model 
(global nar) proposed and developed by Knight et al. (2020). Consider a 
node time-series vector Xt = (X1t,…,XNt)’, where N is fixed. For each node 
i∈{1,…,N} and time t∈{1,…,T}, the global generalized autoregressive 
model of order [ ]( ) 0, pp s N N∈ ×  for Xt is: 
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is the weight of the connection between the node i and the node q at 
the moment t.

The αj∈R are standard autoregressive parameters for the lag j of each 
node. The βjr∈R corresponds to the effect of the neighbors on the r-th 
state, on the j lag. Perturbations {uit}are assumed to be independent and 
identically distributed at each node i, with zero mean and variance σ2

i .
The network may change over time in the gnar model, but the co-

variates remain fixed. This means that the underlying network can be 
modified over time, for example, to allow nodes to enter and exit the 
series, but model tuning can still be done. The αj∈R defines a process 
with the same behavior on all nodes, with differences being present only 
due to the graph’s structure. The interpretation of the network regression 
parameters, βjr, is the same throughout the network.

4. DATA AND RESULTS

4.1. Data 

The data in the study consists of daily closing prices of stocks listed on 
the bmv from January 2, 2018, to October 30, 2023. At the time of the 
study, 143 companies were listed, of which those with positive price 
movements and operating volume were considered, leaving 101 compa-
nies. Of these 101 companies, the bmv classifies them into the following 
sectors: industrial (26 companies), consumer products (17 companies), 
financial services (17 companies), materials (16 companies), consumer 
goods services (14 companies), telecommunications services (6 com-
panies), health (3 companies) and energy (2 companies). 

The sample is divided into the six years considered from 2018 to 2023. 
Daily continuous returns are calculated as in [1].

4.2. Network construction

We started by calculating the continuous returns according to [1] to 
build the network. For each year from 2018 to 2023 and for each of the 
101 actions, an ar(1)-tgarch(1,1) model was estimated as in [2], and 
standardized residuals were obtained. The latter was used to construct a 
matrix measuring bottom-tailed dependency using the nonparametric 
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estimators proposed by Schmidt and Stadtmüller (2006). The distance 
transformation function (d) can be expressed as:

1 I
ij ijd = − λ

For each year, these are used to compute the matrices containing 
the distance transformation function as in [5] based on the lower-tail 
dependency coefficients. This matrix is used to construct the graph con-
sidering a threshold; in Figure 1, the graphs constructed from a threshold 
of probability of tail dependence greater than 0.25 are presented.

Figure 1 shows the graphs of the networks obtained from 2019 to 
2023. It can be seen that there is a more significant number of intercon-
nections in the network than in 2020 when the COVID-19 pandemic 
was at its peak. In this network, the action nodes are shown in different 
sizes depending on the degree of the action. If we consider the centrality 
of intermediation, we would have Figure 2.

Table 1 shows the measures of the shared network by year. The net-
work measurements in 2018 are significant compared to other years. The 
above is because in 2018 the Mexican stock market experienced several 
events and factors that impacted its performance. One of the most notable 
events was holding the presidential elections in July 2018. The political 

[5]

Figure 1. Stock networks in the bmv. The grade determines the size

2019 2020 2021

2022 2023 Sectors

Energy
Industrial
Materials
Frequently consumed products
Health
Consumer Goods Services
Telecommunications services
Financial services
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uncertainty of the elections and the possible direction of economic and 
trade policies under a new government influenced investor perceptions.

In addition to the elections, other global factors also affected finan-
cial markets, including the trade war between the United States and 
China, the normalization of monetary policy in the United States, and 
the volatility in commodity prices. Density appears to have increased 
significantly in 2020 (the year of the COVID-19 pandemic) and 2023 
compared to previous years. This indicates that the grid became more 
interconnected in those years.

Table 1. Network measurements for the years 2018 to 2023

Year Size Density Degree Betweenness Modularity

2018 101 0.0224 2.2376 23.2772 –0.0246

2019 101 0.0081 0.8119 13.1584 0.1098

2020 101 0.0386 3.8614 29.3663 0.0273

2021 101 0.0139 1.3861 14.5644 0.0607

2022 101 0.0095 0.9505 20.3564 0.0243

2023 101 0.0319 3.1881 70.6733 0.0419

Figure 2. Stock networks in the bmv. The betweenness centrality coefficient 
determines the size

2019 2020 2021

2022 2023 Sectors

Energy
Industrial
Materials
Frequently consumed products
Health
Consumer Goods Services
Telecommunications services
Financial services
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The average degree also shows an increase in 2020 and 2023, sug-
gesting that stocks on the network had more connections in those years. 
Betweenness shows much variation, with a significant peak in 2023. This 
could indicate that some specific nodes played a crucial role as bridges 
on the shortest path between other nodes in that year.

Modularity varies over the years but does not show a clear trend. It is 
important to note that a negative modularity value (as in 2018) has no 
inherent meaning, as modularity can vary between –1 and 1. However, 
values closer to 1 indicate a more modular network. Table 2 shows the 
companies with the highest degree and centrality of intermediation. This 
means that, in each of the years, these companies are the ones that act 
most in the process of information flow between stocks. In a financial stock 
network, the grade distribution shows how the degrees of the stocks are 
distributed. It is expected to find a small number of “lead actions” with 
many links and more “follower shares” with more limited connections.

The degree is highest in the nodes (stocks) of the industrial sector, 
followed by telecommunications and financial companies. A higher 
degree in the industrial sector suggests that stocks within this sector are 
more interconnected than in other areas, such as telecommunications 
and financials.

It could indicate a greater dependency or correlation and lead to 
contagion in the stock system when passing through the industrial sec-
tor, which could be due to economic, commercial, or industry factors 

Table 2. Companies with the highest degree and betweenness for each year

Year Firm Sector Degree Betweenness

2018 GFNORTE Financial services 15 268.87

2019 ALFA Industrial 8 285.00

2020 ORBIA Industrial 22 245.30

2020 VOLAR Industrial 21 285.73

2021 HERDEZ Frequently consumed products 10 236.83

2022 ASUR Industrial 8 188.00

2022 GFINBUR Financial services 6 272.50

2023 TLEVISA Telecommunications services 13 549.48
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in particular and in the case of 2020 to the pandemic and that, in this 
case, these stocks are more sensitive compared to stocks in the telecom-
munications and finance sectors.

During 2020, the COVID-19 pandemic had a significant impact 
on financial markets around the world, including Mexico. Although 
the situation changed over time, some sectors were more affected than 
others. Some of the hardest-hit sectors included tourism, which, with 
travel restrictions and health concerns, led to a significant decline in 
demand for air travel and tourism-related services.

The drop in oil demand and the price war between Saudi Arabia and 
Russia negatively affected energy companies, especially those focused on 
oil production. Businesses related to non-essential goods and services 
experienced a decline in demand as consumers prioritized essential 
spending and cut back on luxury or non-essential purchases. Although 
the broader financial sector was affected, banks faced challenges due to 
concerns about rising bad loans and declining economic activity.

On the other hand, some sectors showed resilience or even growth 
during the pandemic. Technology companies, especially those related 
to online services, communications, and digital solutions, saw a surge in 
demand as more people turned to technology to work, study, and entertain 
themselves from home. Health-related companies and pharmaceutical 
manufacturing played a vital role in responding to the pandemic, with some 
experiencing increased demand for health-related products and services.

Stock market contagion in 2020 was widespread and affected global 
markets, including Mexico. Volatility was high, with sharp declines in 
stock indices followed by some recovery as economic stimulus measures 
were implemented and progress was made in developing COVID-19 
vaccines. The response of governments and central banks and progress 
in containing the pandemic influenced the evolution of financial markets.

By 2021, some sectors affected by the pandemic in 2020, such as tourism 
and airlines, were expected to recover as restrictions eased and vaccina-
tion progressed gradually. The technology and health sectors would likely 
continue to be resilient as reliance on technology persisted, and the focus 
shifted to innovation and public health response. The recovery in oil prices 
could have positively impacted companies in the energy sector. However, 
the specific direction could depend on global supply and demand.

Government policies, including economic stimulus and macroeco-
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nomic developments, could have significantly impacted financial markets, 
including the stock market.

Uncertainty around the evolution of the pandemic, virus variants, and 
other geopolitical events could have contributed to volatility in financial 
markets. According to the 2023 network, relations have increased due 
to possible effects of the Russia-Ukraine war.

4.3. Estimation of the global generalized autoregressive network model-α

We simulated 10,000 random non-directed Erdos-Renyi networks, each 
with a connection probability of 0.03, for each year and estimated glob-
al-α gnar models up to p = 2, i.e., eight models for each year, totaling 
80,000 simulations per year, and chose the best models according to 
the aic, bic and llk criteria. Table 3 presents the firms with the highest 
degree and centrality of intermediation according to the aic.

Table 3. Companies with the highest degree and betweenness for each year

Year Firm Sector Degree Betweenness

2018 AMX Telecommunications services 9 631.2052

2019 GFINBUR Financial services 8 462.0951

2019 LAMOSA Materials 8 678.9278

2020 MFRISCO Materials 8 645.8841

2020 LACOMER Frequently consumed products 5 738.4067

2021 AXTEL Telecommunications services 7 802.36

2021 GMEXICO Materials 7 435.36

2021 PASA Industrial 7 549.71

2022 BOLSA Financial services 6 438.91

2022 FRAGUA Health 6 441.31

2022 GMXT Industrial 6 309.99

2022 INVEX Financial services 6 372.99

2022 LAMOSA Materials 6 541.46

2022 NEMAK Consumer Goods Services 5 607.77

2023 GIGANTE Frequently consumed products 8 603.42
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In this part, the results of the simulation and estimation of the optimal 
model for each year are presented according to the aic, bic, and llk cri-
teria. The centrality of degree and betweenness varies between different 
companies and years. In 2019, LAMOSA had a high centrality in grade 
and betweenness, and AXTE in 2021 had the highest intermediation, sug-
gesting a crucial role of these two companies as a bridge in the respective 
networks. In 2022, several companies share a high degree, and NEMAK 
stands out regarding intermediation. In 2023, GIGANTE has the highest 
degree and the highest intermediation. These results provide insight into 

Table 4. Estimation of parameters of the gnar-global models obtained from the 
simulation with the best values of the aic, bic and llk criteria, for each year

2018 2019 2020 2021 2022 2023

aic-bic llk aic-bic llk aic-bic-llk aic bic llk aic-llk bic aic-llk bic

α1 –0.0414* –0.0437* –0.0013  –0.0010  –0.0038   0.0002  –0.0002  –0.0005  –0.0224* –0.0246* –0.0278* –0.0294*

(–0.041 ) (–0.044 ) (–0.001 ) (–0.001 ) (–0.004 ) (0.000 ) (0.000 ) (0.000 ) (–0.022 ) (–0.025 ) (–0.028 ) (–0.029 )

β11  0.0410*  0.0290*  0.0441*  0.0449*  0.0345*  0.0469*  0.0476*  0.0456*  0.0160***  0.0507*  0.0052   0.0370*

(0.041 ) (0.029 ) (0.044 ) (0.045 ) (0.035 ) (0.047 ) (0.048 ) (0.046 ) (0.016 ) (0.051 ) (0.005 ) (0.037 )

β12 -  0.0504*  0.0536*  0.0544* - - -  0.0211  - - –0.0006  -

- (0.050 ) (0.054 ) (0.054 ) - - - (0.021 ) - - (–0.001 ) -

α2 –0.0078  –0.0119*** –0.0105*** –0.0087   0.0064  –0.0135** –0.0131** –0.0136** –0.0167 * –0.0188 * –0.0010  –0.0005 

(–0.008 ) (–0.012 ) (–0.011 ) (–0.009 ) (0.006 ) (–0.014 ) (–0.013 ) (–0.014 ) (–0.017 ) (–0.019 ) (–0.001 ) (0.000 )

β21  0.0544*  0.0028  -  0.0006   0.0378*  0.0212** -  0.0207** –0.0351 * - –0.0076   0.0470*

(0.054 ) (0.003 ) - (0.001 ) (0.038 ) (0.021 ) - (0.021 ) (–0.035 ) - (–0.008 ) (0.047 )

β22 -  0.1148* - –0.0369** - - - - - -  0.0863* -

- (0.115 ) - (–0.037 ) - - - - - - ( 0.086 ) -

aic –41.96113 –41.95792 –35.44612 –35.44185 –46.17257 –31.77419 –31.76793 –31.77157 –36.09249 –36.08509 –55.9008 –55.86695

bic –41.90589 –41.87507 –35.39088 –35.359 –46.11749 –31.7191 –31.72661 –31.70271 –36.03741 –36.04378 –55.79057 –55.79347

llk –5,478.383 –5,476.794 –6,315.561 –6,314.109 –4,956.439 –6,813.83 –6,815.638 –6,813.168 –6,256.769 –6,258.723 –2,449.969 –2,454.863

Note: The parameters are significant at: 1% *, 5% ** and 10% ***.
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the relative importance of firms in the network over time. The centrality 
of degree and betweenness can indicate a company’s strategic position in 
the network, either because of its direct connectivity or because of its role 
as an intermediary in communication between other companies.

Table 5 presents the optimal estimates according to the gnar models 
estimated in the simulations, which obtained the best score according 
to the Akaike, Bayesian, and maximum likelihood criteria.

The parameters between the different models are similar, indicating 
that the relationships between stocks and their returns are stable over 

Table 4. Estimation of parameters of the gnar-global models obtained from the 
simulation with the best values of the aic, bic and llk criteria, for each year

2018 2019 2020 2021 2022 2023

aic-bic llk aic-bic llk aic-bic-llk aic bic llk aic-llk bic aic-llk bic

α1 –0.0414* –0.0437* –0.0013  –0.0010  –0.0038   0.0002  –0.0002  –0.0005  –0.0224* –0.0246* –0.0278* –0.0294*

(–0.041 ) (–0.044 ) (–0.001 ) (–0.001 ) (–0.004 ) (0.000 ) (0.000 ) (0.000 ) (–0.022 ) (–0.025 ) (–0.028 ) (–0.029 )

β11  0.0410*  0.0290*  0.0441*  0.0449*  0.0345*  0.0469*  0.0476*  0.0456*  0.0160***  0.0507*  0.0052   0.0370*

(0.041 ) (0.029 ) (0.044 ) (0.045 ) (0.035 ) (0.047 ) (0.048 ) (0.046 ) (0.016 ) (0.051 ) (0.005 ) (0.037 )

β12 -  0.0504*  0.0536*  0.0544* - - -  0.0211  - - –0.0006  -

- (0.050 ) (0.054 ) (0.054 ) - - - (0.021 ) - - (–0.001 ) -

α2 –0.0078  –0.0119*** –0.0105*** –0.0087   0.0064  –0.0135** –0.0131** –0.0136** –0.0167 * –0.0188 * –0.0010  –0.0005 

(–0.008 ) (–0.012 ) (–0.011 ) (–0.009 ) (0.006 ) (–0.014 ) (–0.013 ) (–0.014 ) (–0.017 ) (–0.019 ) (–0.001 ) (0.000 )

β21  0.0544*  0.0028  -  0.0006   0.0378*  0.0212** -  0.0207** –0.0351 * - –0.0076   0.0470*

(0.054 ) (0.003 ) - (0.001 ) (0.038 ) (0.021 ) - (0.021 ) (–0.035 ) - (–0.008 ) (0.047 )

β22 -  0.1148* - –0.0369** - - - - - -  0.0863* -

- (0.115 ) - (–0.037 ) - - - - - - ( 0.086 ) -

aic –41.96113 –41.95792 –35.44612 –35.44185 –46.17257 –31.77419 –31.76793 –31.77157 –36.09249 –36.08509 –55.9008 –55.86695

bic –41.90589 –41.87507 –35.39088 –35.359 –46.11749 –31.7191 –31.72661 –31.70271 –36.03741 –36.04378 –55.79057 –55.79347

llk –5,478.383 –5,476.794 –6,315.561 –6,314.109 –4,956.439 –6,813.83 –6,815.638 –6,813.168 –6,256.769 –6,258.723 –2,449.969 –2,454.863

Note: The parameters are significant at: 1% *, 5% ** and 10% ***.
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time. However, when we plot those relationships or interconnections 
with the probability measure in the lower tail, the probability that there 
is an extreme fall in one stock, given that there is an extreme fall in 
another stock, increases in crisis periods, which increases contagion in 
those periods whether they are crises, caused by economic, health, or 
financial institutions.

To compare the models, the 2023 model year was used, taking as an 
in-sample the period from January 3 to August 31 and an out-of-sam-
ple from September 1 to November 19. The measurements to be used 
are the mean square and absolute errors. Generally, the model with the 
slightest error in the evaluation measures, such as rmse (Root Mean 
Squared Error) and mase (Mean Absolute Squared Error), is sought. 
Table 5 presents the performance evaluation measures of the models.

In this case, the aic and llk-based gnar models, bic and Order 2 
Autoregressive, have similar rmse and mase, but the var-based model 
has significantly higher errors. Looking at the results, the gnar models 
appear to have similar errors, but the bic-based gnar model has slightly 
lower rmse and mase values in all forecast steps (N = 1, N = 2, N = 5, N 
= 10). We can say that gnar models have better prediction performance 
and are an excellent tool for modeling multivariate time series and the 
interdependencies between financial assets. 

Table 5. Performance evaluation of the models rmse and mase

Step- ahead

N = 1 N = 2 N = 5 N = 10

gnar rmse 4.14522 4.14817 4.14498 4.14612

aic-llk mase 0.90011 0.91108 0.90157 0.90068

gnar rmse 4.14374 4.14721 4.14510 4.14626

bic mase 0.89823 0.90533 0.90046 0.90023

arima rmse 4.14775 4.14782 4.14621 4.14658

mase 0.90279 0.91352 0.90472 0.90162

var rmse 13.26796 30.68082 810.71630 82,171.20000

mase 10.03090 21.20091 349.33500 25,759.06000
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5. CONCLUSIONS

The study was based on daily closing price data from 101 companies 
listed on the bmv from 2018 to 2023. These companies were selected 
for having positive price movements and trading volume. The sample is 
divided into the six years considered from 2018 to 2023. Annual networks 
were constructed using continuous daily yields and ar(1)-tgarch(1,1) 
models, and then the dependence on lower tails on standardized yields 
was empirically estimated. There was a significant increase in network 
interactions during 2020, coinciding with the COVID-19 pandemic.

Measurements on networks show that density increased in 2020 and 
2023, indicating greater interconnectedness between stocks. The average 
degree and betweenness also saw notable increases in 2020 and 2023, 
suggesting increased connectivity and the presence of crucial nodes in 
these years. The grade distribution showed that stocks in the industrial 
sector had the highest grade, followed by telecommunications and fi-
nancial companies.

The COVID-19 pandemic in 2020 had a widespread impact on mar-
kets, affecting different sectors in varying ways. Technology, healthcare, 
and pharmaceutical companies responded positively, while sectors such 
as tourism, energy, and non-essential goods were affected hardest.

Networks were calculated differently, considering simulations to 
compare network models, and the best ones were chosen according to 
Akaike, Bayesian, and maximum likelihood criteria.

gnar models are introduced to estimate what remains of interdepen-
dence between stock series. The centrality of degree and betweenness 
varied between companies and years, highlighting the importance of 
specific companies as bridges in the network. gnar models showed 
good performance in grid prediction, especially the bic-based model 
Measures such as mean square and absolute error were compared, con-
cluding that gnar models effectively model multivariate time series and 
interdependencies between financial assets.

In summary, the study offers a detailed view of the dynamics of the 
stock network on the Mexican Stock Exchange over the years, identifying 
significant patterns and highlighting the influence of external events, 
such as the pandemic and geopolitical conflicts, on the interconnected-
ness and behavior of stocks. In addition, gnar models are presented as 
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efficient tools to understand and predict these complex interrelationships 
in the financial market. 
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