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RESUMEN

El andlisis secuencial no es un t6pico estadistico unificado y simple como el
andlisis de variancia o la regresién miltiple. Es la aplicacién de diversas técnicas
a los datos secuenciales de tipo categdrico. Los primeros articulos sobre el tema
daban especial importancia a la prueba binomial z y al andlisis lag-secuencial.
Los articulos posteriores contribuyeron a la formulacién del puntaje z corregido
y al surgimiento del andlisis log-lineal. A pesar de su aparente precision, el anéli-
sis log-lineal rara vez ha sido utilizado para el andlisis secuencial. Este trabajo
constituye una breve introduccién al andlisis log-lineal, y enfatiza la forma en
que las técnicas de log-lineal se pueden utilizar para el andlisis secuencial. Como
conclusién, se senala la disponibilidad de un formato estdndar para los datos se-
cuenciales y la utilidad de un programa de computadora genérico que pueda re-
ducir los datos secuenciales a tablas de contingencia para el an4lisis log-lineal.
Palabras clave: Andlisis secuencial, andlisis lag-secuencial, andlisis log-lineal.

ABSTRACT

Sequential analysis is not a single unified statistical topic, like the analysis of va-
riance or multiple regression. {nstead it is the application of a number of existing te-
chniques to sequential categorical data. Early articles stressed the binomial test z
score and lag-sequential analysis; subsequent articles provided the correct z score
formula and suggested log-lineal analysis. But in spite of its apparent appropriate-
ness, log-linear analysis has seldom been used for sequential analysis. The presente
paper constitutes a brief introduction to log-linear analysis and emphasizes how log-
Iinear techniques can be used for sequential analysis. It concludes by noting the
availability of a standard format for sequential data and the usefulness of a general
purpose computer program that would reduce sequential data into contingency ta-
bles suitable for log-linear analysis.

Key words: sequential analysis, lag-sequential analysis, log-sequential analysis.
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FROM LAGS TO LOGS:
ADVANCES IN SEQUENTIAL ANALYSIS

Sequential analysis (Bakeman & Gottman, 1986; Bakeman & Gottman,
1987; Sackett, 1987; Anguera, 1991) is not a single unified statistical topic, like
the analysis of variance or multiple regression. Instead it is the application of a
number of existing techniques to sequential categorical data. Nonetheless our
understanding of which techniques are relevant and how they should be applied
has developed dramatically during the past 20 years.

Early articles stressed the binomial test z score and lag-sequential analysis
(e.g., Bakeman, 1978; Bakeman & Dabbs, )‘2}76; Sackett, 1979). Allison and Liker
(1982) agreed that a z score could be used to test sequential dependency, but no-
ted that the binomial computation recommended in the early articles wag techni-
cally incorrect and that a slightly different computation should be used instead
(because expected cell frequencies were estimated from the marginals, not deter-
mined by theory; seec Bakcman & Gottman, 1986). They also suggested that log-
linear modeling might be used but did not develop that'idea in any detail.

Obscrvational data of the sort appropriate for sequential analyses can al-
most always be presented in the form of multidimensional contingency tables.
Castellan (1979) may have becn the first to point this out, and Allison and Liker
(1982) explicitly suggested log-linear analyses in their much-cited paper. Yet for
much of the 1980’s researchers interested in sequential analysis rarely used log-li-
near analyses (exceptions are Cohn & Tronick, 1987; and Stevenson, Ver Hoeve,
Roach, & Leavitt, 1986), cven though such analyses are probably the most appro-
priate ones for sequential data.

The present paper constitutes a brief introduction to log-linear analysis (see
also Bakeman, Adamson, & Strisik, 1989; Bakeman, 1991) and emphasizes how
log-linear tcchniques can be uscd for sequential analysis. Given similar data and
questions, a log-lincar and a lag-scquential analysis yicld similar rcsults, as M.T.
Anguera, A. Blanco, and I intend to demonstrate in a forthcoming paper. Log-li-
near techniques, howevcer, can answer questions that lag-scquential analysis can-
not -and, morcover, arc much more establishcd statistically (the standard
refercnce is Bishop, Fienberg, & Holland, 1975; sec also Ficnberg, 1980; useful
introductions are providcd by Kennedy, 1983; Knoke & Burke, 1980; and Chapter
7 in Tabachnick & Fidell, 1989).

When Icarning about a new topic, it is often helpful to begin with what we
know. Most readers of this paper understand how to analyze two-dimensional
contingency tables using simple chi-square techniqucs, thus analysis of such ta-
bles serves as a uselul starting point.-In this paper I will begin by showing how to
analyze a simplc 2 x 2 table, first using a chi-squarc and then a log-linear analysis.
In the course of this exposition, I will also demonstrate some uscful and basic
descriptive statistics for 2 x 2 tables. The level of exposition is basic and straight-
forward and is intended to appeal to the sort of social science researcher who is
somcwhat suspicious of and occasionally intimidated by mathematical statistics.
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The 2 x 2 Table: Basic Descriptives and Chi-Squere Analysis

Imagine that mother-child conversation is recorded. Each turn of talk is coded as
either responsive to the partner’s previous turn (coded Yes) or not (coded No).
The corpus is then scanned for mother-to-child transitions. There are four possi-
ble kinds of transitions:

1. Mother Yes to Child Yes

2. Mother Yes to Child No

3. Mother No to Child Yes

4. Mother No to Child No
The tallies for such transitions are usually displayed as a 2 x 2 table
like Table 1.

Mother-ChildInteraction:0Observed Freguencies,&n_p_Lg_
Probabilities, and Transitional Probabilities
Child Code Statistic
Mom Code _
Statistic Yes No Sum Prob.
Yes
Obs. Freq. 27 4 31 .52
Trans. Prob. .87 .13
No
Obs. Freq. 18 11 29 .48
Trans. Prob, .62 .38 '
.Sunm 45 15 » 60
Probability .75 .25 ' " 1.00
— |

Simple and conditional frequencies and probabilities. In addition to the raw counts
or observed frequencies (symbolized as obs or f), simple or unconditional
probabilities (symbolized as p) arc one of the most basic descriptive statistics
computed for data like thosc in Tablc 1. The total number of tallies is symbolized
with N. Thus:

p(Mom=Yes)

= f[(Mom=Ycs) /N

= 31/60 = .52
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is the probability that the transitions tallied began with a mother code of Yes. Si-
milarly:

p(Child=Yes)

= f(Child=Yes) /N

= 45/60 = .75
is the probability that the transitions tallied ended with a child code of Yes. For
these (manufactured) data, children had an overall tendency to be responsive,
even more so than their mothers.

Usually data are organized in a 2 X 2 table in order to determine whether
the row variable (in this case, the mother’s turn of talk) is associated with or af-
fects the column variable (in this case, the child’s turn of talk). For example, we
might want to know whether the child is more likely to be responsive if the mot-
her begins by being responsive. The conditional or transitional probability lets us
describe the state of affairs observed (again see Table 1). For example:

p(Child=Yes/Mom=Yes) A

= f(Mom=Yes & Child=Yes) /f(Mom=Yes)

= 27/31 = .87
is the probability that the child’s code will be Yes given that the mother’s code
was Yes (the slash is read as “given”).
Similarly:

p(Child=Yes/Mom=No)

= f(Mofi=No & Child=Yes) / f(Mom=No)

= 18/29 = .62
is the probability that the child’s code will be No given that the mother’s code
was Yes.

Expected frequencies and raw residuals. It appears that children were more li-
kely to be responsive if their mother had begun by being responsive, but is the
diference between .87 and .62 statistically significant? In order to make this de-
termination, expected frequencies (symbolized as exp) and residuals are needed
(see Table 2). Expected frequencies for the cells are computed from the totals in
the margins (which for that reason are called marginals). For example:

exp(Mom=Yes & Child=Yes)

= f(Mom=Yes) X p(Child=Yes)

= f(Mom=Yes) X f(Child=Yes) /N

= 31 X 45/60 = 23.35.
The raw residuals for the cells are then simply the differences between observed
and expected frequencies. For example:

Residual (Mom=Yes & Child=Yes)

= obs(Mom=Yes & Child=Yes)

- exp(Mom=Yes & Child=Yes)

=27-2335=3.75

Pearson Chi-square. Most readers learned long ago to use expected frequen-
cies and raw, residuals to compute a statistic called the Pearson chi-square. It is
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Independence Model: Observed and Expected
TABLA2 Frequencies, Residuals, and Z-Scores

Child Code

Mom Code

Statistic Yes No
Yes

Obs. Freq. 27 4

Exp. Fredq. 23.25 7.75

Residual 3.75% -3.75

Z score 2.24 -2.24
No

Obs. Freq. 18 11

Exp. Freq. 21.75 7.25

Residual -3.75 3.75

Z score -2.24 2.24

distributcd approximately as chi-square and is symbolized here as X2. Letting R,
C,_r, and c rcpresent the number of rows, the number ol columns, a particular
row, and a particular column, respectively, then the Pearson chi-square, summed
over all cells of an R X C tablgc, is:

X2 = (Obsgc-expre)? . (D)
Z cxprc

For the present example:
X2 = (27 -23.25)%/23.25 + (4 - 7.75)%/1.75

+ (18 -21.75)2/21.75 + (11 - 7.25)%/7.25

= 0.60 + 1.81 + 0.65 + 1.94 = 5.00.
Degrees of freedom for a 2 X 2 table are 1 and the critical value for chi-square
with 1 degree-of freedom, alpha = .05, is 3.84, thus for the present example rows
and columns are not independent. Apparently the child’s turn of talk is affected
by the mother’s preceding turn.

Z scores and adjusted residuals. For a 2 X 2 table, as for a one-way analysis
of variance with two groups, no further tests are necessary. For other two-dimen-
sional tables, however, as for one-way analyses of variance with more than two
groups, some sort of post hoc test is necessary in order to determine how the
cells vary among themsclves. For example, imagine that the child’s consequent
turn was categorized as_Yes, No, or_Maybe. Then a significant chi-square for the
resulting 2 X 3 table could mean that the mother’s anteccdent turn affected the
distribution of the child’s Yes’s, or the child’s No’s, or the child’s Maybe’s, or all
three, or only some combination of two of the child’s possiblce responses.
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The residuals provide a descriptive sense of the effect. For a 2 X 2 table, alt-
hough the absolule magnitude of the four residuals is the same, the sign is infor-
mative. For the prcsent cxample, we learn that the child was more likely to be
coded Yes if the mother was coded Yes, and more likcly to be coded No if the
mother was coded No (the residuals are positive; sce Table 2). For a 2 x 3 table
(or any table other than a 2 X 2), the magnitude of the residuals can be informa-
tive as well. But what is a significant magnitude?

Residuals can be standardized, that is, transformed into a score that is dis-
tributed approximately normally. Then any standardized residuals larger than
1.96 (p . < 05) or 2.58 (p <.01) can be regarded as worthy of attention and in-
terpretation. In the chi-square and sequential analysis literature, standardized re-
siduals are usually called z scores. Z scores are computed for each cell of a
two-dimensional table. Letting frc represent the obscrved frequency for that cell,
fr the frequency for tallics in that row, pc the probability for tallies in that row,
the formula is:

2= fre-fipe )

V fipc(1-pc) (1-pr)
For the present example:
z= 27-31X.75 =2.24.

V31 X.75X.25X .48
In the sequential analysis literature, this is sometimes called the Allison and Li-
ker z score (Allison & Liker, 1982; sece also Bakeman & Gottman, 1986).

Early in the log-linear literature, a statistic was dcfincd and called the stand-
ardized residual (it is the residual divided by the square root of the expected fre-
quency). But this was premature. Haberman (1973, 1978) showed that another
statistic, called the adjusted residual, not only was a better approximation to a
normal distribution, but also provided identical absolute values for the four the
cells of a 2 X 2 tablc, wich the standardized residual docs not. Moreover, the ad-
justed residual is the same as the z score defined in the previous paragraph. For
all these reasons, I belicve it makes sense to use the adjusted and not the stand-
ardized residual (some computer programs like SPSSX’S LOGLINEAR and
CROSSTABS provide both, others like SPSSX’S HILOGLINEAR provide only
the standardized residual).

Two-dimensional chi-square analyses. The statistical education of many so-
cial science researchers docs not go much beyond the material presented in this
section, at least with respect to the chi-square goodness-of-fit test (observed fre-
quencies, organized as a row ol K cclls, are compared with theoretically expected
ones, as in the binomial or sign test). And most know how to generalize from a 2
X 2 table to other two-dimensional tables and know that an R X C table has (R -
1) (C - 1) degrees of freedom. Many even know that the chi-square test is called a
test of independence of rows and columns if the units (susbjects, transitions, etc.)
tallied are free to vary along both rows and columns (e.g., subjects are selected

.
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and then are categorized a malc or [emale and a old or young) and a test of homo-
geneity of proportions if the number of units in each row is predetermined (e.g.,
samples of males and females arc selected and then categorized as old or young).
Traditional chi-square analysis does not allow for the ready analysis of ta-
bles with more than two dimcnsions, which is its major limitation. For example,
imagine that we had two kinds of mother-child dyads: dyads containing a depres-
sed and a normal mother, or dyads subjected to two kinds of treatment. The re-
sulting data would be organized as a 2 X 2 X 2 table: dimension or factor A
would be dyad (Depresscd/Normal), factor B would be responsiveness of the
mother’s antecedent turn /Yces/No), and factor C would be responsivencss of the
child’s conscquent turn (Ycs/No). Such tables are rcadily analyzed with log-li-
ncar techniques, which allow us to answer questions like. Is there a relation be-
tween antcecedent and conscquent turns? Is that relation different for depressed
and normal dyads? Bclore showing how such question can be answered, however,
first I will demonstrate how a log-linear analysis of the simple 2 X 2 table just
presented would proceed. This provides a simple and familiar context in which to
present terms and ideas that will be elaborated later.
The 2 x 2 table: Log-Linear Analysis
The “log” in log-linear analysis stands for logarithm, a topic that most of us en-
countered and probably forgot long ago. Briefly, a logarithm is an exponent. Con-
sider the following:

20= 1, logg 1 =0
21 = 2, logz 2 =1 .
22 = 4, logz 4 =2
23 = 8 logz 8 =3
24= 16, log2 16 =4
2= 32, log 32 =5
26= 64, logs 64 =6

27 = 128, logz128 =7.
This scries scrves to remind us that, for example, the log of 8 (base 2) is 3 becau-
se 2 raiscd 1o the power 3 is 8. Similarly, the log (basc 2) of 128 is 7 becausc 2
raiscd 1o the power 7 is 128. In theory, any basc could be uscd, although 2, 10,
and e are the most common.
Natural logs. Recall that ¢ is a constant whosce valuc is approximately 2.718
and that logarithms that use the basc e arc called natural logs. For cxample:

Ine 1 =0
In 3 =110
Ine 8§ = 208

Ine 21 =3.04
Ing¢ 55 =4.01
Ine 150 =5.01
Ine 404 =6.00
Ine 1100 = 7.00
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where In indicates a natural log. As you might guess, log-linear analyses are ba-
sed on natural logarithms, although a user could remain innocent of this fact and
still perform competent analyses.

Log expected frequencies. When testing for the independence of rows and co-
lumns (or the homogeneity of proportions in the different rows), the formula for
an expected frequency for the cell in row r and column ¢ is:

EXPrc =L~P_c =f Xfc/N.
When numbers are multiplicd, their logarithms are added, and when numbers are
divided, the logarithm of the divisor is subtracted from the logarithm of the divij-
dend. Therefore:

In (exprc) = In(fr) + In (fc) - In (N).

If we let:
ur = 1n (fr)
uc = + In (f¢)
u=-1n(N)
then, the formula for the logarithms of the cell frequencies can be expressed as:
1n (exprc) = u + ur + uc. 3)

This is intriguing. The log-linear expression (log because logarithms of obser-
ved frequencies are predicted or modeled; linear because the prediction equation
consists of additive effects) looks remarkably like the model for a two-way analysis
of variance (ANOVA) that postulates two main effects but no interaction.:

Yijk = 4 + ai + Bj + €ijk . (4)
The two-main-effects ANOVA model and the independence log-linear model are
alike in that both postulatc a row and a column cffect, but no row X column inte-
raction. Morc generally, they arc alike in that both are linear models, and statis-
ticians have found lincar models tractable and immenscly uscful, as the broad use
of analysis of variance and multiple regression attests.

The ANOVA and log-lincar models differ in a number of ways. The ANO-
VA model predicts individual scores and includes an error term, whereas the log-
linear modcl predicts ccll frequencies and does not include an error term. Still,
the fundamental insight remains: if logarithms of expected frequencies are mode-
led, then linear models for the cells of contingency tables can be formed. These
models have all the advantages of linear models generally, including the partitio-
ning of effects into main cffects and various interactions among them. Thus log-
linear analyses allow thosc social science investigators whose data is most
naturally organized into contingency tables ready and dircct answers to the re-
search questions that concern them.

Log likelihood ratio chi-square. The log-linear modcl of independence (row
and column effects only, row and column do not interact) generates the log ex-
pected frequencies shown in Table 3. Using Equation 3 and the values given in
the table, the arithmetic is as follows (computed before rounding, thus numbers
shown here may not add exactly):

In(exprc) = u + ur + uc
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In(exprc) = - 1n (N) + 1n (fr) + In(fc)
In(exp11) = -4,09 + 3.43 + 3.81 = 3.15
In(expi12) = -4.09 + 3.43 + 2.71 = 2.05
1n(exp21) = -4.09 + 3.37 + 3.81 = 3.08
In(exp22) = -4.09 + 3.37 + 2.71 = 1.98.

These are logs for expected values (given the model of independence) but
the question remains, how well do these expected values fit the observed ones,
that is, how close are they to the logs for the observed counts?

We could work backwards, findings the antilogs for the logs in Table 3 (which
are the expected frequencics shown in Table 2) and compute a Pearson chi-square.
For a number of technical reasons, however, another statistic is preferred for log-li-

TABLA 3 .
ndependence Model: Expected Frequencies nd

Log ExpectedFrequencies

Child Code Statistic

Mom Code

Statistic Yes No Sum Ln
Yes

Exp. Freq. 23.25 7.75 31 3.43

Ln Exp. Freq. 3.15 2.05
No

Exp. Freq. 21.75 7.25 29 3.37

Ln Exp. Freq. 3.08 1.98

Sum 45 15 60

Ln 3.81 2.71 4.09

near analyses. It is called the log likelihood ratio chi-square, or, simply, the likeli-
hood ratio chi-square, usually symbolized as G I 100 is distributed approximately
as chi-squarc. Summed ovcr all cells in the R X C table, it is:

G2 =2 Y obsrc [1n(0bscc) - In(expre)] %)
or (because log a - log b = log (a/b) :

G? =2 3 obscc 1n(0bsrc/exprec).
For the present example:

G2 =2X (27X [3.30-3.15] + 4 X [1.39-2.05]

+ 18 X [2.89 - 3.08] +11 X [2.40 - 1.98])
= 5.14.
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Again, this result is significant at the .05 level. The modcl of independence fails
to fit the data. As before we conclude that the child’s turn of talk was affected by
the mother’s preceding turn and not independent of it.

Usually, Pearson and likelihood ratio chi-squares yield identical levels of
significance. When they do not, it should only serve to remind us that both X2
and G2 are distributed approximately as chi-square; neither is necessarily distri-
buted exacrly as the theoretical chi-square. But in any case, although both are
printed by most computer programs (e.g., SPSSX’s LOGLINEAR and HILO-
GLINEAR), the likelihood ratio chi-square approximation should be used for
log-lincar analyses.

Hierarchical Models for 2 x 2 tables

Hierarchical log-lincar modcls, like hicrarchical multiplc regression modcls, re-
fer to a series of nested modcls in which successively more complex models incor-
porate all less complex oncs. Whenever log-linear models are discussed, it is
almost always safe 1o assumc that hicrarchical modcls are intended. Nonhierar-
chical log-lincar modcls arc possible, but cven experts find them problematic and
often recommend against their use. For example, the likelihood ratio chi-square
can be partitioned among thc various effects for hierarchical but not nonhierar-
chical models. Moreover, as demonstrated subscquently, there are statistical cri-
teria for choosing among hierarchical but not Nonhicrarchical models. For all
these reasons, only hicrarchical log-linear models are discussed here.

Log-lincar models generate predicted values (or cell frequencies. Each suc-
cessive model in the hierarchy includes an additional term--that is, takes an addi-
tional factor into account--in effect imposing an additional constraint on the cell
frequencies generated by the model. As a result, the cell (requencies predicted by
successive models come closer and closer to replicating or fitting the tallies ac-
tually observed. For a 2 X 2 table, a series of four modcls can be defined.

The null model. As a first stcp, imagine that we knew only that 60 mother-
child transitions wcere tallied, and were asked 1o “modcl” the scores as best we
could. Given this limited information, our best gucess would be that half the tran-
sitions began with the mother being responsive, and hall cnded with the child
being responsive, such that the four types of transitions occurred equally often.
Becausc this first modcl only takes the total number of tallies into account and
nothing clsc, it is often called the nuil model. Tt is usually symbolized as [0], a ze-
ro in brackcts. This modcl nccessarily gencrates cqual frequencies for all four
cells. For that reason, in addition to the null, it is somctimes called the equipro-
bable model as well (sce Figurce 1).

The child only model. The second model assumes knowledge of one factor
or dimension only. For example, imaginc that we knew only that 45 transitions
cnded with Child=Yes and 15 with Child=No, but did not know the distribution
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for Mother=Yes and Mother=No. Then we would distribute the 45 Child=Yes and
the 15 Child=No tallies evenly between the two rows representing the mother,
guessing that half of her responses were Yes and half No. Because this model ta-
kes into account just the child tallies (i.e., the column totals) presented in the
margins of the 2 X 2 1able, it is called here the child only model and is repre-
sented symbolically with [C] (again, see Figure 1).

The child plus mother model. The third model assumes knowledge of both
factors or dimensions. It assumes that both row and column marginal totals are
known; that is, in addition to knowing that 45 transitions ended with Child=Yes
and 15 with Child=No, we also know that 31 began with Mother=Yes and 29 with
Mother=No. This additional information allows us to refine our guesses. Taking
both row and column marginal totals into account, we would expect the 31 margi-
nal tallies in row 1 and the 29 in row 2 to be distributed into the cells like the co-
lumn marginal totals, that is, with a 45:15 or a 3:1 ratio. These considerations
generate the expected cell frequencies shown in Figure 1. Because this model ta-
kes into account marginal totals for both mother and child categories, it is called
here the mother plus child model and is representcd symbolically with [M] fC].
Then [M] [C] model is, of course, the independence modcl discussed in previous
sections.

{01, Null MNodel: [c], child Only Models
child Code child Code
Mom e —— Mom _
Code Yes No Code Yes No
Yes 15 15 Yes 22.5 7.5
No 15 15 No 22.5 7.5
60 45 | 15 I 60
[M]([C), Mom + Child Model: [MC], Mother X Child Models
Child Code Childa Code
Mom —_— Mom _—
Code Yes No Code Yes No
Yes 23.25 7.75 31 Yes 27 4 31
No 21.75 7.25 29 No 28 22 29
45 | 15 l 60 45 lls I 60
Fiqure 1. Expected cell frequencies generated by four
hierarchical log-linear models for a 2 X 2 table. Each
ive model imp an additional constraint on the cell
frequencies.
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The saturated model. The fourth and final model assumes knowledge, not
just of the row and column totals, but also knowlcdge of the frequencies in the
four cells. For a 2 X 2 table, this fourth model gencrates cell frequencies identi-
cal to thosc observed (again, sce Figure 1). Such a model is called-a sarurated mo-
del and nccessarily the scores generatced by it fit the observed scores perfectly.
Because this modcl, in addition to marginal totals for both the mother and child
categories, takes the cross-classification of the cells by the these two factors into
account, it is called here the mother times child model and is represented symboli-
cally with [M] [C] [MC]. ‘ '

Because cach successive model after the null adds a term--first [C], then [M]
[C], then [M] [C] [MC]--it makes sense to represent the fourth model is usually
represented simply as [MC]. Scores that satisfy the [MC] constraint--scores that
reflect the actual mother turn X child turn cross-classification--necessarily satisfy
the [M] (row or mother category) and the [C] (column or child category) margi-
nal constraints as well. Thus, once the fourth model has been represented with
[MC], it is unnécessary to add [M] and [C] to it. For that reason, and in the inte-
rest of simplicity, [MC] is usually presentcd by itsclf; the [M] and [C] terms are
undcrstood implicitly.

Backwards elimination. For case of exposition, the four models were just
presented beginning with the simplest or null model and progressing to the most
complex or saturated modcl. Usually, however, a log-lincar analysis precedes in
the opposite dircction. We begin with the saturated modcl, which by definition
fits the data perfectly, and proceed to eliminate terms (which is called backwards
elimination). The goal is to {ind the simplest model that still fits the data, that is,
whose chi-square remains nonsignificant. The likelihood ratio chi-sqare assesses
how well the expccted scorcs for the models defined at each successive steps fit
the observed data (sce Table 4). And the change in chi-square from step to step
indicatcs how important the term, or effect, or constraint deleted at that step is
(seec Table 5).

For the sake of complctencss, and to illustratc how a log-linear analysis
migth procced, all four steps for the present 2 X 2 example are shown in Tables 4
and 5. But in practice, an investigator faced with a two-dimensional contingency
table would probably only compute chi-square for the independence or homoge-
neity of proportions model (here the [M] [C] model). If this model fails --that is,
if it generates scores quile discrepant from those actually observed as reflected in
a chi-squarc significantly diffcrent from zero--then we reject this model and ac-
cept the only one that could fit, the full or saturated modcl, and we conclude that
the two dimensions of the contingency table are not independent (or that the
proportions rcflected in the rows arc not homogcencous). This, in fact, is the
substantive result usually desired by rescarchers.



Septiembre 1991 FROM LAGS TO LOGS

77

Mom Code
Yes No
Model 6> ar
Statistic Child Code Child Code
Yes No Yes No
(MC], u + up+ ug + uy,e 0.0 O
(saturated model)
Exp. Freq. 27 4 18 11
Ln Exp. Freq 3.30  1.39 2.89 2.40
(MI(C), u + ug+ ug 5.14 1
(mom + child model)
Exp. Freq. 23.25 7.75 21.75 7.25
Ln Exp. Freq. 3.15 2.05 3.08 1.98
[C), u + u. 5.21 2
(child only model)
Exp. Freq. 22.5 7.5 22.5 7.5
Ln Exp. Freq. 3.11 2.01 3.11 2.01
[0], u 20.91 3
(null model)
Exp. Freq. 15 15 15 15
Ln Exp. Freq. 2.71 2.71 2,71 2.71
Iable 5 R
Hierarchical Models for a 2 X 2 Table: G2 and Partial G2
Step Model g% at Deleted ag? adt
1 [MC], saturated 0.0 (]
2 .[M][C], mom + child 5.14 1 [MC] 5.14 1
3 [C), child only 5.21 2 M) 0.07 1
4 [0])], null model 20.91 3 [C] 15.70 1

Note. M represents the mother or row dimension, C represents the

child or column dimension.
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Describing results. For the present example, we now know that the mother’s
antecedent turn has a significant effect on her child’s subsequcnt one. The model
that includcs the saturated or 2 way interaction term fits the data (likclihood chi-
square [0] = 0.0, p = 1) whereas thc model that delctes the [MC] term does not
(likeclihood chi-squarc[1] = 5.14, p .<05). The probability that the child’s turn
will be codcd responsive is .75 overall. This becomes .87 when the mother’s turn
was coded responsive and. 62 when the mother’s turn was code unresponsive. Al-
ternatively, we could notc that the odds that the child will be responsive-is 6.75
to 1 if thc mother was responsive and is only 1.64 to 1 if she was not (the ratio of
these two ods, called the odds ratio, is 4.13, and is a common descriptive statistic
used in epidemiological studies). In any case, we now know from the log-linear
analysys that the difference between these two conditional probabilities, or two
ods, is statistically significant.

Degrees of freedom: Multiple regression and log-linear approaches compared.
We have yet 1o discuss how degrees of freedom for the chi-square statistics com-
puted in Tables 4 and S arc dctermined. This is an important topic for two re-
asons. First, we nced to know dcgrees of freedom before we can assign
significance to a particular value for chi-square. Chi-square, like the F distribu-
tion, is actually a family of distributions, and its exact shape--and hence the criti-
cal value demarcating 5% or 1% of the area under the curve--depends on the
degrees of frcedom. Second, understanding how degrees of freedom are determi-
ned for contingency tables highlights some of the kcy differences between the
multiple regression or ANOVA and log-linear approaches.

Both hicrarchical multiplc regression and log-lincar approaches consist of a
series of steps. A modcl is associated with each stcp and cach successive model
takes additional information into account. For multiplc rcgression analyses, the
modecls predict scores [or individuals. The starting point is total variance, which
reflects differences between the observed scores and the mcan. When computing
total variance, only one constraint is imposed on the individual scores--that is,
the only parameltcr specified is the mean--and so we claim N - 1 degrees of free-
dom total. Successive steps include more factors and make successively more ac-
curatc predictions concerning individuals’ scores and thereby reduce residual or
error variance. This has the cffect of increasing the RZ.accounted for by the mul-
tiple regression modcl specificd at each successive siep.

For log-lincar analyscs, on the other hand, the modcls predict scores for the
cells of a contingency or cross-classilication table, not for individuals. For the
present 2 X 2 example, the starting point is the cmpty table with its four cells.
The null model imposces only one constraint on these cclls, namely that the four
cell frequencies sum 1o the total number of tallies. Because there are four scores
initially constrained by onc parameter, N or the total number of tallies, the de-
grees of freedom for the null model is 4 -1 or 3. In other words, three cell fre-
qucencices are [ree 1o vary, but oncce three have been cntered, the fourth is
determined by the requirement that the four sum to the total. If K is the number
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of-cells, then degrees of freedom total is K - 1, which for the present example
equals 3.

Similar reasoning applies to the column only model (here the [C] model),
except now two parameters constrain the cell frequencies, one representing the
grand total and one the column or child category totals, which results in K - 2 or,
for the present example, 2 degrees of freedom. Similarly, the row plus column or
independence model (here the [M] [C] model) is constraincd by three parame-
ters, which results in K - 3 or, for the present examplc, 1 degree of freedom. In
other words, the four cells for the 2 X 2 independence or homogeneity of propor-
tions modcl are constraincd by both row and column marginals. Once a score is
entercd in one cell, values for other cells are determined. Because only one cell is
free to vary, there is only one degree of freedom associated with this model.

The present example consists of a 2 X 2 table, but two-dimensional tables
with more than two lcvels per dimension are possible. Speaking generally, if R
represents the numbcr of levels for the row dimension and C represents the num-
ber of levels for the column dimension, then the degrees of freedom for an R X_C
table are (R - 1) times (C - 1), as notcd earlier. Note that degrees of freedom for
contingency tables do not takc the number of tallies into account, only the num-
ber of dimensions and the number of levels for each dimension. This contrasts
with the degrees of freedom computations for multiple regresion analyses, which
take the total number of subjccts into account and, as noted earlier, reflects a key
difference between multiple regression models, which predict individual scores,
and log-lincar models, which predict cell frequencies instcad.

Partial chi-square. One additional detail In Table 5 requires clarification.
Each step in a hierarchical log-linear analysis is associated with a total chi-squa-
re, which rcpresents how well the scores generated by the present model fit the
cell frequencics actually obscrved, and also with a change in chi-square, which
represcents the contribution of the term deleted at that step and which is someti-
mes called a partial chi-square (symbolizcd with a A or dclta in Table 5). In order
to evaluate the significance of the change in chi-squarc wc need to know its de-
grees of freedom, which is the difference between the degrees of reedom for the
present and previous model. For the present examplc, the change in chi-square
from the third 1o the fouth step is 20.91 minus 5.21, which equals 15.70. The co-
rresponding change in dcgrees of freedom is 3 minus 2 which equals 1.

Hierarchical orders. Tablcs 4 and 5 show only onc of the two possible ways in
which terms for a 2 X 2 tablc could be dcleted. The 2-way saturated term, [MC],
must be deleted first, but there arc two 1-way terms, [M] and [C], and either [M]
could be deleted sccond and [C| third as in Tables 4 and 5, or [C] could be dele-
ted second and [M] third. There is no intrinsically correct ordering among terms
that occupy the same level (i.c., all |-way terms, all 2-way terms, all 3-way terms,
ctc.). Instead, investigators must decide on.a hicrarchical ordering that makes
scnse, given their subsldntlvc and rescarch concerns.

For the present cxampl(,, the order of the 1-way terms makes little differen-
ce. The partial chi-squarc associated with the mother term is small and insignifi-
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cant, which only means that about half of the mother’s turns were coded Yes and
about half No. Similarly, the large and significant partial chi-square associated
with the child’s turn only means that codes for the child’s turns were not distribu-
ted evenly. But the significance or insignificance of the 1-way terms is placed in
shadow by the significant 2-way or saturated term. For this example, only the sa-
turated model fits the data, thus interpretation needs to take into account the
cross-classification of, or interaction between, the row and column (i.e, mother
and child) factors.

Beyond Two Dimensions

The previous discussion has emphasized not just two-dimensional tables,
but the simplest exemplar of a two-dimensional table, a 2 X 2. The purpose was
to present terms and issues basic to log-linear analysis in the simplest context
possible. Needless to say, interesting applications of log-linear analysis often in-
volve more than two dimensions and so it is worthwhile to consider briefly how
such analyses would proceed.

Imagine, for example, that mother-child interaction was coded for two
groups of mothers, those who were depressed and those who were not (or those
who had received a particular treatment and those who had not) and that their
interaction was again coded as for our previous example. A 2 X 2 X 2, group (De-
pressed/Not depressed) X mother’s antecedent turn (Yes/No) X child’s consequent
turn (Yes/No) contingency table would result. Let G represent group. This table
could be analyzed with the hierarchical series shown in Table 6.

- Table 6
ive St e} a

Step Model © g% ar Deleted aG? aar

1 (CMG] 0.0 o0

2 [CM](CG]([MG] . 1 [CMG] 1

3 [CG)[MG] 2 (cMi 1

4 [MG] 3 [CG] 1

5 [C]1[M)([G] 4 [MG) 1
Note, M represe‘nts the mother dimension, C represents the child
dimension, and G represents the group dimension.

If only the saturated model, [CMG], fit the data (i.e., if the chi-square asso-
ciated with the [CM] [CG] [MG] model was significantly different from zero),
then we would conclude that child’s consequent turns were affected by mother’s
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antecedent ones in different ways for depressed and non-depressed mothers. In
analysis of variance terms, we would say that group interacted with mother’s an-
tecedent turn in accounting for the child’s consequent turn. However, if the [CM]
[CG] [MG] model fit the data, but the [CG] [MG] model did not, we would con-
clude that child’s consequent turns were affected by mother’s antecedent ones
(removing the [CM] turn resulted in loss of fit as indicated by a significant in-
crease in chi-square), and in a similar way for both depressed and non-depressed
mothers. Finally, if the [CG] [MG] model fit the data, we would conclude that
mother’s turn did not affect their child’s subsequent ones, although the distribu-
tion of the mother’s codes (as signalled by the [MG] term), and the child’s codes
as well (as signalled by the [CG] term), was different for the depressed and non-
depressed groups.

Computing log-linear statistics. This relatively brief paper can provide only
the simplest of introductions to a subtle and far-ranging topic. Ultimately, we
learn best by doing and interested rcaders are encouraged to perform log-linear
analyses of their own data. Two programs in SPSSX arc especially helpful (see
Norusis, 1985). First, use HILOGLINEAR to compute partial chi-squares (spe-
cify PRINT ASSOCIATION and use the default DESIGN, which is the saturated
model). Then, because HILOGLINEAR only gives standardized residuals, use
CROSSTABS to compute adjusted residuals (specily OPTIONS 17) for the ta-
bles broken down as indicated by the log-linear analysis.

Reducing sequential data to contingency tables. Most major statistical packa-
ges (BMDP, SAS, SPSS, SYSTAT) have routines for log-linear analysis of con-
tingency tables. However, there are no widely-used general purpose computer
programs that produce contingency tables from sequential data. Nor is there an
accepted standard way to represent sequential data, a state of affairs which I be-
lieve has impeded progress. In an attempt to remedy this situation, V. Quera and
I have defined a sequential data interchange standard, which we call SDIS (Bake-
man & Quera, 1991), and are beginning to define a general purpose computer
program that will analyze SDIS data. Such a program, coupled with log-linear
analytic techniques, should greatly advance the use of sequential analysis.
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