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ABSTRACT

A new approach is offered wherein behavior emitted by neural networks
without antecedent stimuli is either shaped to produce a patterned behavioral output
{Simulation 1) or is strengthened by delayed reinforcement through the mediation of
response afterdischarges (Simulation 2). These networks demonstrate how Stein’s In-
Vitro Reinforcement (IVR) of neuronal bursts might account for various reinforcement
effects at a behavioral level. The explorations presented illustrate two benefits to
behavior analysis provided by biobehaviorally-based computational models of learning:
accomodation of new biological information and recasting of behavioral concepts in
ways compatible with this new information.

Keywords: neural networks, behavioral pattern, shaping, in-vitro reinforcement,
biobehavioral learning models

RESUMEN

Se ofrece una nueva aproximacién en la cual la conducta emitida por redes
neurales sin estimulos antecedentes es moldeada para producir una salida de patrén
conductual (Simulacién 1) o es fortalecida por reforzamiento demorado a través de la
mediacién de postdescargas de respuesta (Simulacién 2). Estas redes demuestran cémo
el reforzamiento in-vitro (IVR) de explosiones neuronales propuesto por Stein puede dar
cuenta de diversos efectos de reforzamiento a nivel conductual. Las exploraciones aqui
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presentadas ilustran dos beneficios que los models computacionales bioconductualmente
basados proveen al analisis de la conducta: acomodacién de informacién bioldgica nueva
y modificacién de conceptos conductuales en formas compatibles con esta nueva
informacién.

Palabras clave: redes neurales, patrones conductuales, moldeamiento,
reforzamiento in-vitro, modeios bioconductuales del aprendizaje

Neural network models can highlight new biological findings that may
aid in developing an account of the biological mechanisms of behavior. In the
present article, we highlight the observations by L. Stein of an operant
“hehavioral atom” (Stein, 1997; Stein, Xue, & Belluzzi, 1993; 1994; Stein &
Belluzzi, 1989). We seek to connect the ideas of Stein and his collaborators to
the phenomena of shaping a complex operant and of brief-delayed but effective
operant reinforcement (action at a distance). Our goal is to see if a collection
of behavioral atoms will act like an organism. In this manner, we hope our use
of a neural network model will allow this new conceptualization to be entered
more firmly into behavior analysis.

¢ A second way that learning models can be useful to the experimental
analysis of behavior is to encourage new descriptions of well-established
functional relations that make it possible for current knowledge in neuroscience
to influence how we organize our behavioral facts. In the present report we
attempt to recast descriptions of the shaping of complex operants and of brief-
delayed but effective operant reinforcement. We believe this recasting may
open a path that will allow us to fit these phenomena into the developing
behavioral neuroscience.

Stein describes the phenomenon he has studied as “in-vitro
reinforcement” (IVR). In his preparation, a long-lasting change in neural activity
results from the post-response infusion of the neuromodulator, dopamine. He
and his colleagues work with the following procedure: A neuron (usually a
pyramidal cell from the CA1 area of the hippocampus) that exhibits a
characteristic occasional multi-spike burst {(mediated by activity of L-type Ca2 +
channels) is monitored in-vitro. Whenever a Ca2 + burst is detected, dopamine
is injected around the cell via pipette. The burst rate is observed to increase.
The basic notion is that initially random activity, when regularly followed by a
biologically important event, will come to occur more often (reinforcement).

This increase has been demonstrated not to be the result of the effects
of dopamine alone. Only the close temporal sequence of a calcium burst
followed by dopamine results in this increased burst rate. Dopamine delivered
at other times results in a slight decrease in burst rate. Likewise, bursts not
followed by dopamine cause a decrease of the burst rate in vitro (extinction).
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It is the delivery of dopamine contingent upon bursting that causes the increase
in burst rate.

The conceptual basis of this IVR-based network is the R-S relation
between a response and its reinforcing outcome, rather than the traditional S-R
relation between an antecedent stimulus and an elicited response used in other
computer models of learning. in the computer simulations we report, we model!
this R-S conception of learning without using any antecedent stimulus.

Furthermore, we believe that ours is the first artificial neural network to
implement McCulloch & Pitts (1943) original suggestion for modeling learning
in neural networks by using variable thresholds instead of the presently more
common variable connection weights. In [VR, the burst rates of the pyramidal
cells are presumed to be due to intrinsic properties of the cells rather than due
to variable strengths of interconnections between cells. Each of our simulated
neurons has a variable threshold whose level determines the burst rate.
Connection strength is not modified.

We also believe it is the first network of variable-structure stochastic
learning automata (Narendra & Thathachar, 1989) using a learning algorithm
that is derived directly from neurophysiological evidence. Similarly to so-cailed
Reinforcement Learning systems (Sutton & Barto, 1998), both networks
presented here use only one-bit binary (reward/no reward) feedback across the
entire network. Typical feedforward networks (such as backpropagation
networks) receive vector feedback across different parts of the network,
simplifying the “credit assignment problem” {Staddon & Zhang, 1991). Even
most reinforcement learning networks require scalar feedback (indicating a
quantity of reinforcement) rather than just binary feedback to operate
effectively. Given the relative inefficacy of changes in amount of reinforcement
provided in animal studies, the dependence on scalar feedback is not especially
behaviorally plausible. With these foreshadowings, we proceed directly to the
simulations

Simulation 1 -- Shaping a neural network

In the first simulation, a series of black and white images are generated
by the net. Rather than viewing these images as stimuli, however, each image
should be viewed as a complex response, with each binary pixel (0/1)
constituting one element of the complex topography. No antecedent stimulus
is supplied. In fact, the neural network, called Clavier, lacks any model of
sensory systems whatsoever. As such it resembles the preparations discussed
by P. Weiss in response to Lashley’s canonical treatment of the problem of
serial order (cited in Lashley, 1951, pp. 140-142). The goal of the simulation
is to have the Clavier network emit one specific “target” response chosen
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(arbitrarily) by the user. Another part of the simulation system, external to the
network, evaluates the similarity of the network’s output to the target and
delivers contingent reinforcement in an effort to shape the network’s behavior
to the target.

As with all elements of any computational system, each response/image
emitted by the Clavier network is made up of a string of ones and zeros. For
the simulations reported here, each successive image is made up of 64 such
bits. Each response can be considered to be an 8 by 8 image made up of
squares where each is either black or white. After each response (image) is
emitted, the external shaping module judges it against the most recent series
of responses. A simple measure indicates how close this particular response
{pattern} is to a “target” image. If it meets a criterion of being closer than its
predecessors, it is reinforced according to a percentile reinforcement schedule
{Platt, 1973; Galbicka, 1994). This is another important feature of the present
simulation. Itis very rare for neural networks to be trained using methods with
well-established track records of success in conditioning real animals. The
percentile reinforcement schedule has demonstrated its ability to shape behavior
in both the laboratory and clinic, with both non-human and human organisms.

‘ Gradually, the images move closer to the target until the neural network
generates an exact copy of the target — shaping is complete. This gradual
approach to the target pattern is accomplished by adjustment of the thresholds
in each of the 64 units (one for each pixel in the image) that determines
whether a particular response element is likely to be black or white. Each unit
is a model of one of Stein & Belluzzi's pyramidatl celis. Each pixel emitted on
each iteration cycle indicates either a burst {one) or no burst (zero} in that
interval. As each threshold shifts, each element learns to be one or the other
color. The total pattern of ones and zeros models the pattern of bursting
activity in some portion of the cerebral cortex, with different patterns of activity
presumably producing different topographies.

In computer science terms, this sort of procedure is called a search
task. The measure of difficulty of a search task is the number of distinct
elements (responses). There are 2°* possible 64-bit long binary strings. A non-
learning system using a systematic search would take an estimated mean of 9
billion billion cycles to reach the target. The expected time to reach the target
for a strictly random search (the so-called British Museum algorithm, Newell,
Shaw, & Simon, 1958) is double that. Typical learning systems using scalar or
vector feedback complete the search in far shorter times.

The learning algorithm is implemented with a network of variable-
structure stochastic learning automata (VSLAs), each of which inciudes an
independent threshold that determines the probability of a black or white output
in one position. In our simulations, an eight by eight image is duplicated in
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anywhere from 25 thousand to 250 thousand cycles. Using Stein & Belluzzi’'s
(1989) definition of cell-bursting to estimate the cycle time (at 50 ms), this
would be equivalent to a range of approximately 20 minutes to 3 hours 20
minutes in real time. If the thresholds are modified using a linear (truncated)
learning rule, the target is approached asymptaotically. If a damped learning rule
is used, the network rapidly stabilizes, emitting only the target (criterial)
response shortly after shaping is completed (see below).

METHOD

Each unit in the Clavier network, called an emitter unit, is a variant on
the standard McCulloch-Pitts cell with a threshold between zero and one and
a random activation, also between zero and one. If the activation exceeds the
threshold, a signal {one) is output by that emitter unit. (When a unit emits a
one, we say that the unit has fired. When it emits a zero, we say that it did not
fire.) Thus, lower thresholds mean higher mean firing rates and higher
thresholds mean lower mean firing rates. Depending upon which signal {one
or zero) is output by that unit and what reinforcement signal (also one or zero)
is provided to the entire network by the training system, the threshold of that
unit is either raised or lowered by a calculated amount.

For each unit, on each cycle, there are four possibilities. Either the unit
signals or it does not. Either the network is reinforced or it is not. The learning
rule for altering the threshold can thus be specified by a two-by-two table (c.f.
Figure 1).

The network is trained to reach the solution using a training procedure
called the percentile reinforcement schedule (Platt, 1973; Galbicka, 1994). This
procedure requires that we specify the probability that a criterion response will
be reinforced (p) and the number of prior responses against which the present
response will be compared {(m). In our case p=.30 and m=20.

The search task in our simulation proceeded as follows: On each cycle
(trial) Clavier output a string of ones and zeros that was matched to the black
and white target pattern. The difference between the two pictures was
interpreted as a numerical distance (inverse similarity). Our measure of
(dis)similarity was the Hamming distance. Hamming distance is calculated as
the number of mismatching element-pairs between the current and a target
pattern. (Thus the Hamming distance for these simulations ranged from O --
perfect match -- to 64 - all cells mismatching the corresponding pixels.) If this
Hamming distance was closer than thirty percent of the most recent 20
distances, reinforcement was provided. Reinforcement, when given, lowered
the thresholds for all units that had been active (white) on that trial. Thresholds
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for units that had not been active on that trial were not altered. On non-

reinforced trials the thresholds for bursting cells are raised and again, thresholds
for inactive units remained unchanged.

m
Output Rule (y; indicates whether unit i bursts):

| iffxi > Ti

Vi X; ~ Ul0.1]

0 otherwise. 0<1i<1

where x; is the activation of unit i and 1; is its threshold.

m
Learning Rule ( A«; is the change in the threshold for unit i):

A‘t = SR+ ~SR+
M -A | +d

where A is the learning increment (set to .01)
and 6 is the "decay" increment (set to .0043).

m

Figure 1. Algorithms for Clavier. The basic equations used to simulate In-Vitro
Reinforcement (IVR). Activation is presumed to be intrinsic to the unit and is simulated with a
pseudo-random variate Uniform over [0,1]. Burst rates vary inversely with value of variable
threshold, t. Changes in burst rate are governed by changes in threshold. Changes in threshold
only occur after a burst. Each unit emits bursts and alters its burst rate independently of other
units. Different values of increments, | and d, were used in different simulations. Each unit is a
Variable-structure Stochastic Learning Automaton and takes no inputs except for reinforcement

The threshold increment and decrement were set so that there was a
3 to 7 ratio for the sizes of the threshold increase (called decay rate since it
represents the effect of extinction) to the size of the threshold decrease (called
learning rate since it represents the effect of reinforcement). This ratio was set
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to balance the overall probability of extinction (7 of 10) to probability of
reinforcement (3 of 10). Subject to this ratio of extinction to reinforcement
over time, the threshold of a hypothetical cell whose activity had no effect on
the match of output (response) to the target would remain at a constant level
(on average}. The use of the Hamming distance guarantees that every cell has
some effect on the overall match. Therefore, cells corresponding to white
pixels on the target tend to fire more and cells corresponding to black pixels on
the target tend to fire less as learning progresses.

After thresholds were adjusted, another cycle commenced, another
output pattern was generated and so forth. The simulation stopped when
Clavier duplicated the target pattern exactly, successfully completing the
search.

RESULTS

Monte Carlo testing to criterion. Across many simulations, we have
demonstrated that, using this training system, the Clavier network can be
trained to duplicate any binary sequence given it. We undertook a series of
Monte Carlo simulations to answer three specific questions: First, what
proportion of simulations of Clavier match a randomly entered target exactly
and how long does it take? Answer: Of the 1200 simulations we completed
with pseudo-random patterns (with around 50% white elements), the target
was found in all cases. The slowest learning required 278,901 cycles. Second,
we observed that learning by Clavier is asymmetric with respect to shifting
toward “white” or “black” (bit values of one or zero). Once a threshold begins
to rise, the cell bursts less often and therefore is less subject to change. It is
harder to shift a threshold down than up because there are fewer opportunities
to move a higher threshold. This creates a bias toward going "black.” We
therefore tested to see if the proportion of zeros to ones in the target string
would affect search time. Answer: Though all targets were reached, in general,
targets with more “white” where learned more slowly than targets with more
“black.” This effect is demonstrated in Figure 2. Third, in reacting to our initial
observations, a well known computational model builder (R. D. Luce, personal
communication) suggested that we add a damping component (see appendix)
that shifted the thresholds more smoothly and more readily toward the
extremes (low or high) without the necessity of truncation. This damping
component was a bidirectional variant on the old Bush-Mosteller (Bush &
Mosteller, 1951) asymptotic learning rule. Did it affect performance? Answer:
Yes. The damping function reduced the “"black bias" (see Figure 2). The
damped version of Clavier tended to reach all targets in a mean time
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comparable to the best times of the original algorithm.
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Figure 2. Search results for Clavier. Mean number of cycles to emission of first perfect
match to target for Clavier/Police Artist simulations. The three values (Dark, Medium, and Light)
across the X-axis represent the proportion of black pixels in the 64-pixel black and white targets.
Diamond-shaped points are means from simulations using the linear (truncated) learning rule.
Square points are means from simulations using the damped learning rule. Each point represents
the mean of 200 simulations {20 targets x 10 pseudo-random seeds)

Steady-state responding under continuous reinforcement. The very
large stochastic component of the Clavier network means that the first emission
of the target response is no guarantee of further success. Given the relative
stability and reliability of the damped version of Ciavier (see above), that
version was selected for an attempt to condition Clavier to a steady state.

The percentile reinforcement schedule was used for all sub-criterial
responses. Target responses (Hamming distance of zero} were always
reinforced {crf). Figure 3 shows a cumulative record of Clavier's criterial
responses. Baseline (m) for the percentile reinforcement schedule was
increased from 20 to 200. Learning rate was increased from .01 to .35 and
decay from .0043 to .15. (Such large increments produced instability with the
linear learning rule, but worked well with damped learning.) The first criterial
response was emitted on the 6378th cycle, equivalent to approximately 5
minutes and 20 seconds of real time. Within a few simulated seconds, two
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more criterial responses were emitted. Almost immediately thereafter,
responding proceeded at a near maximal rate. {The maximal rate here is limited
only by the definition of cycle time and is thus unrealistically high, particularly
for a complex response. This problem was resolved in Simulation Two, below.)
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Figure 3. Clavier achieves steady-state. Cumulative record showing the cumulative
number of successful target responses from the Clavier model. Note that the model successfully
completes the response the first time at cycle 6378. Since cycles take a (simulated) 50 ms this
means the first successful response was observed after approximately 5 minutes. Responses then
deviate from the target pattern until cycle 6439. The correct responses then come rapidly as the
model continues to duplicate the target response for the remainder of the simulation. The eventual
rate of target response emission was approximately 10 per sec. This rate is so high since the
Clavier model does not include a factor to acknowledge that the response itself takes time. This
attribute is added in the second simulation (cf.)

DISCUSSION

Thus, the Clavier network has successfully linked a real training
procedure from the psychological laboratory and clinic (shaping by the use of
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a percentile reinforcement schedule) to a particular sort of neural plasticity
found in the neurophysiological laboratory (IVR reinforcement). This
accomplishes what we indicated above as the first benefit provided by neural
network modeling.

With regard to the second benefit, note that the architecture of Clavier
is distinct from most neural networks in that there is no input layer. Other than
the reinforcement, there is no stimulus information provided to the network. In
fact, we call the simulation Police Artist, because the task for the neural
network is to draw a picture of a target it never sees. In providing such a
network we believe we have demonstrated the second benefit noted above -
to show what new potential may be achieved in our conceptualizing of learning
phenomena if we incorporate new information coming from neuroscience. Our
second simulation emphasizes this benefit even more strongly.

In addition we would like to emphasize that unlike most neural network
training procedures, the present percentile reinforcement schedule has been
well established as an actual training method used successfully with actual
human and non-human subjects in both laboratory and classroom settings.
Aside from work by Gullapalli {(1990), the completed simulation is the only use
of @ variant of the method of successive approximations to train a network in
a search task of which we are aware. Unlike the simulation presented here,
Gullapalli did not use a training method validated with real organisms.

Finally, by the standards of artificial intelligence and machine learning,
Clavier is a slow learner. More sophisticated search algorithms, particularly
those receiving more information from the environment, can search the space
of 64 bit binary strings far faster than Clavier. It must be remembered that
Clavier works with only one bit of information per cycle, far less than neural
networks using supervised learning (Rumelhart, McClelland, & The PDP
Research Group, 1986) or reinforcement learning (Sutton & Barto, 1998).
Further, most fast algorithms offer little in the way of biological plausibility and
the sole biological phenomenon adumbrated as the basis for learning is
inevitably the ubiquitous long-term potentiation (Bliss & Lema, 1973; Bliss, &
Colingridge, 1993).

Simulation 2 -- Action at a distance: Timing and Delay

One of the more interesting things that researchers combining Behavior
Analysis and Neural Networks have been able to do is to take a new look at old
problems. The best example of this is Donahoe, Palmer, & Burgos’ (1997)
study that looked at the age-old dichotomy between elicited and emitted
responses. The authors showed that, at a biological level, individual responses
might have characteristics of both elicitation and emission, categorizable as
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either at a behavioral level, depending upon circumstances.

The second simulation of the present paper provides a second look at
another old controversy: how to explain the effects of delayed reinforcement.
We used a neural network model to look at delays of about one second or so.
Within learning theory, two approaches have emerged, which we will call here
“Two Factor Theory” and “Action at a Distance.”

Two Factor Theory asserts that, in order for reinforcement to be
effective, it must come immediately after responding. Thus, when the primary
reinforcer comes after some delay, there must be one of a series of conditioned
reinforcers that precedes it. Conditioned reinforcers are presumed to be
produced through Classical Conditioning.

Wolfram Schulz (1997; Schultz, Dayan, & Montague, 1997) and others
are doing research on a possible neurophysiological analogue to conditioned
reinforcement, working with cells that release diffuse dopamine. This supports
one way that the nervous system might extend the time for effective
reinforcement. We are, however, not fans of Two Factor Theory. It seems too
elaborate a use of higher order conditioning for us.

Action at a Distance asserts that the functional behavioral relations
include the temporal relations and that, given regular and reliable relations
between delay and efficacy of reinforcement, the effects observed are the
effects of operant conditioning simpliciter and that no other sort of conditioning
need be postulated at the behavioral level.

A characteristic of the Action at a Distance account is that, by
intention, it offers no specific alternative to Two Factor Theory. Presumably,
reinforcement is efficacious because some neurophysiological mechanism is
susceptable to the effects of reinforcement for some period of time after a
response. We try here to make that assumption a bit more concrete. We
model a way the nervous system might carry out Action at a distance without
a cascade of classically conditioned associations: Our proposal is that there
might be a response afterdischarge of neural activity that effectively extends
the response.

The Vibraphone network. The neural network of this second simulation
is also based on the In-Vitro Reinforcement (IVR) of Stein & Belluzzi (1989).
This second network, called Vibraphone, differs from Clavier in a number of
respects. Two of the most important are a more neuroanatomically plausible
structure and attention to temporal considerations in both design and
implementation. In Clavier, no attempt was made to give an account of how
a particular pattern of bursting would lead to a particular sort of behavior or
motor movement. The architecture of Vibraphone, by contrast, makes use of
recent reviews of functionally suggestive aspects of cortical neuroanatomy
(Abeles, 1991; Valiant, 1994, Crick & Asanuma, 1986). Further, every event
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within the Vibraphone network is modeled as occurring at a location. Any
effect of one event upon another takes some specified amount of time, which
is included in the model. Also, every event has a duration, which is also
modeled.

The reinforced bursting of pyramidal neurons in hippocampal slices
maintained in vitro is seen as a neural step or two prior to a response that
might produce a reinforcer after a brief delay. Over and above the delay
between overt response and reinforcer, there is the lag between the burst and
the subsequent neural activity that generates the muscular movement, the time
it takes for the muscular movement itself to occur, the time between the
delivery of the reinforcer and the neural activity that releases the dopamine, and
the time it takes for the signal from the Ventral Tegmental Area to arrive at the
cortex and produce the diffusion of dopamine. If cells exhibiting IVR are, in
fact, instantiations of Skinner’s “behavioral atoms,” then there must be a
neurophysiological analogue to the delay between response and reinforcer. |t
is the delay between the Ca2+ burst that initiates the response and the
diffusion of dopamine resulting from the reinforcer.

From a spatial perspective, delivery of the reinforcer can occasion
diffusion of dopamine in the vicinity of the cells that fired to initiate this
response. There is, however, a major problem that is demonstrated in a figure
presented by Stein & Belluzzi: As shown in Figure 4, the In Vitro Reinforcing
effects of dopamine on cell bursting are severely diminished when the diffusion
of dopamine is delayed by as little as 100 ms and are effectively eliminated 200
ms. As noted above, the series of delays between pyramidal burst and
dopamine diffusion, taken along with the normal response-reinforcer delay,
makes for a compound delay easily an order of magnitude greater than 200 ms.
That leaves a very long temporal gap (Skinner, 1984, p.722; Skinner, 1988,
p.470) that must be filled in by a presumed cascade of conditioned reinforcers.
Our model seeks to fill in a second or so of this gap by extending the period
wherein the cortical neurons fire.

We propose the following alternative mechanism for bridging this
temporal gap. Any biobehavioral model includes models of neural activity that
eventually produce motor activity. S. Glenn (personal communication)
advocates the notion that rather than conceive of such neural activity as the
cause of a response, that it is better understood as a part of the response. This
reconceptualization has many important ramifications. For our present
purposes, the most important is that there may be (central) nervous activity
that is concurrent with, or even subsequent to, the motor activity that may also
be considered a proper part of the response. An afterdischarge of cortical
activity may constitute a temporal extension of the response itself. As Lashley
(1951, p.120) put it: "The fact of continued activation or after-discharge of
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receptive elements and their integration during this activation Justlﬁes the
assumption of a similar process during motor integration,”
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Figure 4. Delay of In-Vitro Reinforcement. Delay of reinforcement gradient in neuronal
operant conditioning from Cellular investigations of behavioral reinforcement, by L. Stein & J. D.
Belluzzi, 1989, Neuroscience and Biobehavioral Review, 13, p.75. Copyright 1989 by the Pergamon
Press. Reprinted with permission. The number of bursts (y) for hippocampal pyramidal neurons
measures the degree of conditioning by the diffusion of dopamine {10mM of N-0437) x ms after
a burst. The number in parentheses is the number of neurons tested

The basic idea is that, should a burst occur early in the process that
eventually produces a motor movement, then backward inhibitory projections
{presumably from the primary motor cortex back to the secondary motor cortex)
briefly dampen the bursting both of the cell that fired originally and also of cells
that are near neighbors. The dynamics of the network are such that after a
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period wherein activity is suppressed, upon release of that suppression, the
suppressed units recover with increased activity. With the simple addition of
the postulate that near neighbors of pyramidal cells are more likely to produce
similar responses, the delayed bursting of neighbor cells can be timed so as to
make them susceptible to diffuse dopamine at a point well after the motor
activity has ceased and dopamine due to primary reinforcement is, in fact,
diffusing throughout the area.

METHOD

The proposed architecture for Vibraphone is shown in Figure 5. The
network consists of two layers, with activation proceeding from left to right
from deeper in the cortex toward the motor systems (as indicated by the
arrowheads on the connections).

Each triangular element is a unit modeling a pyramidal cell. All
pyramidal units produce Calcium (Ca2+) bursts as well as the more usual
Sodium (Na +) spikes. Pyramidal units in the first layer have variable thresholds
similar to those of Clavier, with variable burst rates that increase with dopamine
diffusion within 100ms of a burst. Cells in the second (rightmost) layer have
fixed thresholds. Each pyramidal cell is paired with a smooth stellate cell
(indicated by the star-shaped elements in the diagram). Smooth stellate cells
such as chandelier cells and basket cells (Abeles, 1991; Valiant, 1994} in the
cortex have strongly inhibitory, axo-axonic connections to nearby pyramidal
cells. When these stellate cells are activated, all activity in the nearby
pyramidal cells is suppressed.

The network is structured vertically as well as horizontally. Groups of
cells, modeled after microcolumns in the cortex each govern a separate,
cumpeting response (labeled to the right of the second layer). The diagram
shows three columns, governing three responses. In principle, of course, there
could be many more. We have conducted simulations with up to four
responses and twelve cells per group. Here, we report resuits from a network
with two columns producing two responses, with six pyramidal cells in the first
layer of each column.

Key to the function of the network is the firing of pyramidal cells in
layer 2. There is one pyramidal cell in layer 2 for every group of cells in layer
1. Bursts (but not spikes) in layer 1 produce spikes in layer 2. (Spikes in layer
1 are modeled as background activity using) When the spike activity in the
layer 2 pyramidal cell is high enough (as governed by the fixed threshold in that
cell), the layer 2 pyramidal cell emits a burst. Any burst in a layer 2 pyramidal
cell immediately initiates the corresponding response. In addition, backward
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projections to the stellate celis in the corresponding group (same column) in
layer 1 cause all pyramidal cells in the group that generated the response to be
strongly inhibited. Finally, lateral projections across layer 2 to those stellate
cells create strong inhibition across all of layer 2.
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Figure 5. Vibraphone architecture. Units and connections for the Vibraphone model.
Triangles are pyramidal {bursting) units. Stars are smooth stellate {(inhibitory) units. Pyramidal units
in Layer 1 {on left) have pseudo-random activation and variable burst thresholds as in Clavier {cf.}).
Pyramidal units in Layer 2 (on right) have activation as a function of bursting of connected
pyramidal units from Layer 1 and fixed burst thresholds. Each stellate unit completely inhibits its
neighboring pyramidal unit. Each group of units (from top to bottom) governs one competing
response. Bursts (but not spikes) from pyramidal cells in Layer 2 activate corresponding response
(Rx), all stellate cells in same group from Layer 1, and all stellate cells in all groups in Layer 2
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This specific architecture implements the four features we believe are
necessary to correct functioning of the network, namely: (1) Forward
projections are excitatory and backward connections are inhibitory. (2) Lateral
inhibition widens further “downstream” (closer to motor systems). In the
present network, this is implemented by having forward projections focus down
like a funnel from more units to fewer units. (3) Processes {refractory times
and inhibitory durations) lengthen downstream.

We assume that, under ordinary conditions, these neighboring cells
burst asynchronously and are all in different stages of readiness at different
times. When a burst or parallel bursts at stage one generate(s) a burst at the
stage two of this sequence, this blanket of inhibition is passed back and
suppresses all the connected cells of stage one. By blanketing this
neighborhood with inhibition, all these cells complete their refractory phase
during the period of shared inhibition. Given each neuron’s tendancy toward
spontaneous activity, when the inhibition ceases, a synchronized volley of
bursting is likely to occur in that one neighborhood, while the other
neighborhoods continue in their asynchronous bursting. Should a flush of
diffuse dopamine enter the entire stage one region at this point, few cells in the
region will be bursting, except in the neighborhood of the cells that produced
the response. Using the notion of IVR, the pyramidal celis in the neighborhood
of the cell that originally initiated the motor movement will be differentially
reinforced, since they will be bursting and their windows of susceptibility will
be open. In fact, if there continues to be a situation that induces activity of
these neurons and if dopamine continues to be diffused, this group of neighbor
cells will continue an extended, synchronized volleying.

This afterdischarge of synchronized volleys of Ca2 + bursts effectively
extends the temporal window that Stein & Beluzzi found for individual
hippocampal cells for a network of interconnected cells. This (covert) temporal
extension of responding via a neurally plausible mechanism offers a basis for
developing a neural model for Action at a Distance: the extended, synchronized
bursting of cells with similar motor function after the motor movement.

RESULTS

Computer simulations of this model, using SAS/IML® Software (1996),
have just begun. We do, however, have some interim results.

Key to demonstrating the efficacy of reinforcement across brief delays
is the ability to differentially reinforce a particular response. A simulation was
designed with what we believe are realistic durations set for spikes, bursts,
inhibitory effects, refractory effects, motoric movements, sensory detection of
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reinforcement, and dopamine diffusion to the cortex. A network with two
response groups was constructed and the network was trained with continuous
reinforcement (crf) for one response with extinction (ext) for the other. After
an initial period of conditioning, the schedules were reversed with the
previously reinforced response now under extinction and vice versa. Finally,
the schedules were reversed again for an A-B-A design.
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Figure 6. Response differentiation under brief-delayed reinforcement by Vibraphone
network. Simultaneous cumulative records of Response 1 (upper, thicker line) and Response 2
{lower, thinner line} under alternating continuous reinforcement (crf) and extinction {ext). No
discriminative stimuli supplied. Each iteration cycle (on the X-axis} models 1 ms of real time. Clear
alternations of response rate occur following schedule changes (indicated by vertical dashed lines).
Effects of response competition can be observed in brief bursts of responding for one operant when
responding slows on other operant. Low rates for both responses at end of simulation are due to
satiation effect

Over a wide variety of paraméter settings and even minor changes in
algorithm, the system was tuned to produce a pattern of behavior such as that
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shown in Figure 6 with moderate reliability. Such consistent results indicate
that it is the general approach and architecture, as illustrated in Figure 5, and
not the details of the implementation nor specific parameters that are the
guarantors of the successful simulation of response differentiation accomplished
here.

Obviously, we would prefer to have seen stronger and more abrupt
effects than those demonstrated. Response rates for this model are, however,
strongly constrained by the inhibitory and refractory effects that insure that the
responses are competitive and that the timing between initial burst in layer 1
and eventual motor movement is realistic. Changes in response rate are thus
difficult to obtain.

As a last comment, note the leveling off of both cumulative records at
the end of the session. This effect is due to all thresholds rising to the point
where no amount of reinforcement can produce further responding. It is
roughly analogous to satiation in that the dynamics of responding and
reinforcement cause the system to drift into a state where reinforcement is
inefficacious. If another model of satiation is desired, parameters can be reset
to prevent this decline in reinforcer effectiveness.

DISCUSSION

The principal value of the success of the Vibraphone network in
response differentiation over brief-delayed reinforcement is that the very narrow
temporal window of susceptibility to dopamine reinforcement found in IVR can
no longer be counted as evidence against Stein’s hypothesis that the IVR
mechanism may constitute the substrate of Skinner’s behavioral atoms. A
relatively simple network of IVR-capable cells can produce responding under
control of operant reinforcement delayed in excess of the 100ms temporal
window for individual neurons.

Additionally, we hope we have shed some new light on the old
controversy found in the learning theory literature between Two Factor Theory
and Action at a Distance. Even in contemporary treatments of delayed
reinforcement such as those of Sutton & Barto {1998), Classical Conditioning
is the principal, if not the sole model of how an organism produces effective
sequences of behavior in serial order with primary reinforcement available only
at the completion of the task. We suspect that, in real organisms, there are
muitiple mechanisms that create these behavior sequences. Recall that these
are the kinds of sequences for which Lashley challenged us to account {(1951).

If both the Classical conditionability of dopaminergic cells and the kind
of response aftercharge addressed in our proposal prove able to account for
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ways the nervous system spans the temporal gap of delayed reinforcement
(from both ends}, then it is possible that both processes together {perhaps with
additional processes still to be envisioned) can account for the effectiveness of
delay of reinforcement. If so, then biobehavioral approaches may have again
demonstrated their ability to resolve an old controversy in learning theory by
demonstrating harmony between purported alternatives. That is, often what
appear to be alternatives are better thought of as complementary.

GENERAL DISCUSSION

We hope that the simulation research reported here provides an
illustration of the benefits to behavior analysis uniquely obtainable by neural
network research. Simulated behavior by plausibly structured networks of units
exhibiting activity analogous to that found in the biological laboratory here
resembles actual behavior from the operant laboratory. These results make
plausible that particular biological phenomena underlie particular behavioral
phenomena. This evidence is strengthened due to what P. Weiss refers to as
the “rigorous limitations [placed] upon the free flight of our fancy in designing
models of the nervous system” by the constraints of the ever-increasing
amount of neurophysiological data available to the modeler (Lashley, 1951, p.
140). Neural networks can be used to lift flights of speculative fancy or to co-
constrain these speculative fancies with a combination of biological and
behavioral facts.

We have noted several times that the biological systems we have
simulated here lack discriminative stimuli, or even the sensory apparatus to
detect discriminative signals. While no organisms have such a structure,
laboratory preparations with these characteristics have a long history (Lashley,
1951, pp. 140-142). Such preparations, like our simulation, demonstrate
ongoing organized, rhythmic activity in the absence of stimulus input. In the
cited passage, Weiss points out that the then contemporary models of neural
systems were unrealistic because they lacked many of these properties. Even
now, nearly b0 years later, the same can be said of most neural networks.
(However, see Donahoe, Palmer, & Burgos, 1997, and Edelman, 1992, for
networks with some of these properties.)

The clear consensus of the biobehavioral experts in 1951 was that
reflexology and associationism, however dramatically elaborated, could not be
reconciled with the facts of neurophysiological dynamics. Neural network
simulations provide us with a tool that Lashley and his contemporaries did not
have. With this tool, we can begin the reconciliation they looked forward to
half a century ago.
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