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ABSTRACT

Neural network models have played major practical roles in engineering as well
as theoretical roles in cognitive science, and now are being explored in behavior
analysis. What contributions can these kinds of models make to a science of behavior?
Neural networks and behavioral processes can show similarities in dynamical properties,
dependency on some variation of a contiguity mechanism, instantiation of some sort of
memory, and operations in accordance with some kind of delta rule leading to a quasi-
stable state. However, because these are basically inherent properties of all network
models, they are grossly indeterminate. Conversely, they may be best described as
“implementory”, as opposed to “explanatory” models in the sense that they, with few
exceptions, only simulate what they were specifically designed to simulate. This “curve-
fitting” quality sets them apart from predictive and otherwise suggestive quantitative
models. One rationale for their exploration is their putative value in simulating neural
mechanisms in learning. Not only is it the case that we understand little about these
mechanisms to begin with, but network models capture virtually none of the
complexities of the nervous system at any level. Despite all these difficulties, these
models are worth further development and exploration as potentially powerful
quantitative approaches to behavior, independent of any possible relations to real neural
systems.
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RESUMEN

Los modelos de redes neurales han jugado papeles importantes tanto en
aplicaciones practicas de ingenieria como en teorias de la ciencia cognoscitiva, y ahora
estan siendo explorados en el andlisis conductual. ;Qué contribuciones puede hace este
tipo de modelos a una ciencia de la conducta? Las redes neurales y los procesos
conductuales pueden mostrar similaridades en sus propiedades dinamicas, dependencias
sobre alguna variacién de un mecanismo de contigtiidad, realizacién de alguna forma de
memoria, y operaciones de acuerdo con cierta regla delta que lleva a un estado cuasi-
estable. Sin embargo, puesto que estas son propiedades béasicamente inherentes a
todos los modelos de redes neurales, estan gruesamente indeterminadas.
Contrariamente, pueden ser mejor descritas como modelos “implementadoras”, en
oposicidén a “explicativos”, en el sentido de que, con muy pocas excepciones, simulan
s6lo lo que fueron disefiados para simular. Esta cualidad de “ajuste de curva” los
diferencia de modelos cuantitativos que son mas predictivos y sugestivos. Una
justificacion para explorarlos es su valor putativo para simular mecanismos neurales del
aprendizaje. No sélo es el caso que entendemos muy poco estos mecanismos, sino que
los modelos de redes neurales capturan virtualmente ninguna de las complejidades del
sistema nervioso en nivel alguno. A pesar de estas dificultades, estos modelos merecen
seguir siendo desarrollados y explorados como poderosas aproximaciones cuantitativas
a la conducta, independientemente de cualesquiera relaciones posibles con sistemas
neurales reales.

Palabras clave: modelos de redes neurales, procesos conductuales, sistemas
neurales, propiedades dindmicas, mecanismos de aprendizaje, implementacién,
explicacién

Neural networks have been of considerable practical and theoretical
value in a number of domains in engineering, business, economics, the military,
indeed, any area where the application and analysis of learning and adaptive
systems is of interest. Behavior analysis came rather late to this parade, but,
as This Issue attests, has begun to exploit the quantitative powers of the
method. Neural networks have long been a source of controversy within
cognitive psychology in challenging the traditional rule-based and
representational models of complex performance in humans (see, e.g., Ellis &
Humphreys, 1999). The debates still rage among the clever practitioners in
cognitive science, but within behavior analysis and beyond to more
conventional learning theorists, network models are a natural source of
experimentation and exploitation {e.g., Schmajuk, (1997). In this essay, |
would like to explore briefly a number of aspects of neural networks and their
potential role in the analysis of behavior. First, | will discuss the place of both
neural networks and behavioral processes in the larger domain of dynamical
systems. Then | would like to address the question of what networks can and
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cannot tell us about behavior. In that context, | also want to comment on the
issue of what networks might or might not have to do with the neural bases of
behavior.

Neural networks have a long and distinguished history reaching back at
least to the nineteen forties and were creations of such luminaries as Alan
Turing, John von Neumann, and Pitts and McColloch (see, e.g., Haykin, 1999
for a review of the history of neural networks). These earlier theoreticians
attempted to develop quantitative abstractions of neural interactions, and their
achievements laid the foundations for the entire field of cellular automata of
which neural networks are a particular, but now very large outgrowth. Modern
developments in the theory and practice of systems like cellular automata had
to await the availability of fast, efficient, and large-memory computing devices.
Cellular automata are essentially programs involving a number of units that
interact locally, that is, with immediately adjacent units according to certain
rules. Conway’s “Game of Life” is perhaps the best known and can show
remarkable patterns of organization (see, for example, Coveney & Highfield,
1995). Neural networks are systems of interacting units that differ from
conventional cellular automata in that a given unit’s influence can extend well
beyond adjacent units. Properly structured and programmed, these systems are
capable of patterns of organization that are immensely useful as learning and
problem-solving programs.

Dynamic Networking

Neural networks, cellular automata, numerous mechanical,
thermodynamic, electrical, and chemical phenomena, ecological, genetic,
physiological, and evolutionary processes, as well as other selective and
adaptive systems, including operant conditioning, all exemplify dynamical
systems. Dynamical systems theory and its more recent offspring, complexity
theory, provide an overarching approach to these and many other processes
that demonstrate organizational complexity and emergent properties (e.g., Bak,
1996; Bar-Yam, 1997; Casti, 1994; Coveney & Highfield, 1995; Jackson,
1989; 1990; Kauffman, 1993; Peak & Frame, 1994; Nicolis & Prigogine,
1989).

Fundamentally, dynamical systems theory addresses change. Dynamics
is understood commonly as a field of physics dealing with the description of
how forces act to produce changes in motion. Modern dynamics emerged from
classical mechanics, the study of motion first developed systematically by
Newton, then elaborated and refined by such great 18" and 19" century
mathematical physicists as Laplace, Lagrange, and Hamilton. Modern dynamics
was founded largely by Poincaré who wrote a now-classic three-volume study
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inspired by attempts to address the n-body problem in astronomy. The problem
is to describe the interaction of three or more astronomical bodies subject to
Newton’s inverse square law and to predict future motions from initial
conditions. Poincaré’s contributions were enormous not only in solving
particular cases of this problem, but in developing general methods to approach
complex non-linear systems through essentially geometric or topological
descriptions of local and global properties of motion. Modern non-linear
dynamics, including chaotic processes and analyses of complex systems of
many kinds can be traced to this work (Diracu & Holmes, 1996).

The dynamics of virtually any system from a billiard ball on an elliptical
table to an electrical circuit with feedback to predator-prey interactions to
population genetics to neural networks are all subject to essentially a common
analysis in terms of attractors, stability, instability, dissipation, feedback,
organization, and emergence. I'll briefly review some to these features and
subsequently relate them to neural network functioning.

The concept of an attractor is fundamental to a description of any
dynamical process. Motion, or any change in a system, can be depicted in a
special field called a phase space. This space, or manifold, may be multi-
dimensional, depending on the complexity of the system of interest. A simple
case is the motion of a pendulum where we may plot position versus velocity
(i.e., a phase space in two dimensions) under a variety of initial conditions. If
the pendulum is not subject to any friction and the displacement is small, the
dynamics will be described by a set of concentric circles. Such a geometric
picture of the motion in phase space is called a phase portrait. At the greatest
displacement from rest, the velocity goes to zero; as the bob moves through its
lowest position the velocity is greatest, and so on to the opposite maximal
displacement, etc. The possible states of motion achieved after transients die
away are called attractors. In the frictionless pendulum example, the attractor
is called a limit cycle. If friction or damping were taken into account {a form of
dissipation), the phase-space plots would cycle in toward a center, the fixed-
point attractor. Dissipation generally refers to a condition where some form of
energy is required to drive the system. In the pendulum case, combinations of
driving forces and friction can result in multi-or quasi-periodic or even chaotic
attractors. In the latter case, even though the attractor is confined within
regions of the phase space, the motion becomes essentially unpredictable.
Chaotic attractors may be called strange or stochastic, depending on their
particular properties. In general, if driven appropriately, non-linear dissipative
systems are capable of very complex behavior (e.g., Moon, 1992).

Stability refers to regions of an attractor field wherein nearby motions
stay near or eventually merge with an attractor, as in the case of the damped
pendulum. Another way of saying this is that nearby trajectories tend to stay
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nearby. Unstable attractors are regions where nearby trajectories can diverge
from an attractor, so that slightly different initial conditions result in large
differences in subsequent motions. A pencil precariously balanced on its point
is an example. Such an unstable attractor is also called a repellor.

Phase portraits of complex systems may resemble an uneven or rough
landscape with many attractors and repeliors of various extents of “depths” or
“heights “, that is, local regions of stability or instability, called basins of
attraction. The overall picture is somewhat like a contour map, or a weather
map showing circulations around regions of high and low pressure. A boundary
region between basins of attraction is called a separatrix. One might think of
separatrices as ridgelines in a mountainous landscape. Globally, what emerges
from the dynamic analysis is a field of attractors defining an organization or
pattern of the system.

Feedback refers to conditions in which some outcome or consequence
of a system is fed back into the system. Negative feedback contributes to
stability in that an outcome of motion tends to return the motion to a previous
state. Gravity acts on a swinging pendulum at its maximum displacement to
either maintain the limit cycle or, in the case of dissipation, return the pendulum
to its ultimate fixed-point attractor where motion ceases. Positive feedback
acting alone will lead to instability. For example, vibrations at resonant
frequencies may cause a suspension bridge to collapse. Particular combinations
of negative and positive feedback, that is, conditions contributing to both
stability and instability can lead to complex, emergent patterns, a process
sometimes given the name seff organization (e.g., Bak, 1996). There are
numerous examples in nature: crystallization, tornados, the flocking of birds and
the schooling of fish, ant colonies, animal coat colors, embryological
development, ecological systems, biochemical pathways, and the acquisition
and control of patterns of behavior engendered under contingencies of
reinforcement.

How do neural networks exemplify characteristics of complex dynamical
systems like those mentioned? | should first note that there are many different
architectures and programming approaches to these models (e.g., Anderson,
1995; Bozinovski, 1995; Ellis & Humphreys, 1999; Haykin, 1999; Schmajuk,
1997}). Most, however, consist of a number of elements or units, arranged in
layers, including input and output layers, with connections in various
configurations between the units from layer to layer. Rules of unit interaction,
feedback arrangements, initial weights, and other specifications are established
and the system tested to see if it accomplishes the intended purpose. What is
interesting dynamically about these arrangements? The typical programming
procedures are essentially a concatenation of coupled non-linear difference or
differential equations whose inputs and outputs drive and reflect the ongoing
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variations in activities from unit to unit. Often, stochastic features may be
added, for example, with respect to activation states, making the system not
only non-linear, but also probabilistic in its function. The shifting pattern of
activities of the elements, either discretely or continuously as a function of their
inputs, and the feedback from the system outputs can be described as a field
of attractors, stable, unstable, periodic, quasi-periodic, and possibly chaotic.
Stochastic features, curiously enough, often contribute to achieving stability by
helping the system into a “lower energy state”, that is, minimizing discrepancies
between the inputs and the desired outputs. The network pattern of
organization defining the successful transformations of inputs to outputs
displays a fundamental property of complex dynamical systems, namely
emergence. This means that we cannot understand the input-output
transformations by looking only at the component elements of the system, The
function of the network depends on interactions between and among elements;
indeed, in a sense the network acts as a whole, somewhat like a flock of birds
soaring and diving as a unit, or better, a full orchestra playing say, a Mahler
symphony,

Because dynamical systems can have common properties, one kind of
system may simulate another. It has long been known, for example, that a
corresponding electrical circuit can simulate virtually any mechanical system
(the correspondence is the basis of an analog computer). The possibility of
simulation results from the fact that any given set of differential equations (and
difference equations) can model a muiltitude of systems. Presumably, any
behavior modeled by a set of such equations has its analogy with some other
dynamical system (see Marr, 1992 for examples). With behavior, aspects of
antecedents and consequences can have the role of forces in driving or
retarding behavior {e.g., Nevin, 1992). Operant behavior has characteristics of
a complex system in that in addition to showing a variety of non-linearities, it
is dissipative and can sit on the edge between stability and instability.

Removing reinforcement, for example, is equivalent to altering the
dynamics such that the basin of attraction shifts and the behavior “goes
elsewhere”. Consider also the complexity inherent in the action of a
contingency of reinforcement. | have previously described this as:

“The effect of reinforcement is to induce change through selection.

Reinforcement effects depend on the initial states of the system, for

example, where in time, or what features of responding are occurring.

As this continues, the system is changing, so reinforcement acts on a

different pattern, and so on. The patterns of behavior emerging and the

pattern of reinforcement delivery are in a kind of dynamic dance, a

flowing partnership between the effects of patterns of reinforcement on

patterns of responding and the counter effects of patterns of responding
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on the patterns of reinforcement” (Marr, 1997(a), p. 77).

Network models can also display the interactive pattern of input and
output, ultimately (if all is weli) achieving the meta-stability characteristic of
contingency-controlied behaviors. With behavioral change, it is often very
difficult, if not impossible to discern just what aspects of behavior, at what
level, are being acted upon. This is the molar -molecular problem and may
reflect the emergent aspect of a complex system. Likewise, in the network, the
shifting distribution of weights and activations as the system “learns” are
virtually impossible to comprehend.

What Can Neural Networks Tell Us About Behavior?

There are at least two dimensions of concern here. First, we may ask
to what extent neural networks and their computational cousins have significant
correspondence with actual nervous systems and thus may tell us something
useful about brain-behavior relations. Second, even if such models were not
enlightening about the role of the brain in behavior, then they still might be
useful as analytic abstractions of behaviora! processes and thus form part of the
armamentaria of mathematical theorists of behavior. | would like to explore
briefly this latter alternative first and then return to the question of physiological
plausibility.

There is now a vast literature attesting to the success of network
systems in modeling an astonishing range of activities for both theoretical and
practical purposes including pattern association and recognition, signal
processing, concept learning, memory processes, Pavlovian and operant
conditioning, language function, motion detection, and a host of other
applications in engineering and elsewhere (Amit, 1994; Anderson, 1995; Ellis
& Humphreys, 1999; Haykin, 1999; Rouder, Ratcliff, & McKoon, 2000;
Schmajuk, 1997). The contributions to This Issue are clear illustrations of the
range of the method. Neural networks thus share in the general advantages of
quantitative models. Minimally, useful quantitative models require careful
specification of assumptions, relevant variables and their interrelations,
computational rules, and initial and boundary conditions. These efforts serve
to sharpen theoretical positions and structures that, in psychology, are usually
restricted to verbal description. Good models handle, within the domain of
interest, extant results in at least relative detail; they are falsifiable, thus test
the limits of their applicability; they link or integrate a seemingly diverse set of
phenomena, and they are capable of extending our understanding through non-
trivial experimental suggestions and predictions.

There are a number of examples we can point to in the quantitative
analysis of behavior that display all these desirable characteristics of good
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models: behavioral momentum, melioration, global optimality, linear systems
theory, varieties of behavioral economics, and delay reduction, just to name a
few. How might these examples differ from a successful network model? It
is in the areas of enlightening integration and prediction that network models
seem the least useful or effective. I've have found very few predictions of
new, not to say surprising, behavioral phenomena or principles through the use
of these simulations, but | may be simply showing my ignorance (see Ellis &
Humphreys for a few possible examples). One case to consider here is the
model discussed by Donahoe, Palmer, and Burgos (1997) simulating basic
operant conditioning. A significant aspect of their theory of operant
conditioning is that stimuli present when the reinforcer is delivered gain control
over responding thereby, so what is strengthened or selected is environmental
control as opposed to simply responding. This theory, of course, was in no
way dependent on any quantitative model of behaviof. Their model simulates
a variety of effects consistent with their theory and with some extant data, as
it should because it was built with that purpose. One interesting feature is that
without the input from a context, conditioning did not occur. Since the success
of the model is evaluated on how well the simulations simulate, just what this
résult tells us is not clear because it is difficult to imagine behavior occurring
in a total contextual vacuum. Conditioning also depended on “spontaneous
activity” of units engendered by variation in the logistic activation function, in
turn producing a stochastic variation in threshold activation. While this
characteristic of the model was adopted for reasons of physiological pfausibility,
as mentioned earlier, stochastic “jiggling” is a common technique in network
modeling and has the function of improving the dynamical properties of the
system leading to stable attractors related to minimal error.

Biological plausibility aside for the moment, network models of behavior
appear to do just what they are designed to do, namely simulate some process,
or processes, and nothing else. They may be constructed to lend support to
an existing theory (e.g., Donahoe, et al., 1997; Rouder, et al., 2000) by
S|mulatlng the experimental data previously suggested by that theory. In that
sense, they are implementers, not explanatory mechanisms. To be certain,
mighty portions each of mathematical sophistication and skill, experience,
ingenuity, patience, and fiddling are required to accomplish this kind of feat for
any interesting theory. There are an astonishing variety of types of models
from which to choose (see, e.g., Haykin, 1999), or one may construct a hybrid,
or even a new type altogether (see Rouder, et al., 2000 for a recent example).
Within any given type, numerous parameters have to be adjusted and rules
generated specifying interactions and weights, initial input states and other unit
weights, stochastic “jiggling”, activation functions, output criteria, feedback
conditions and distributions, etc., etc. Given all the available options, network
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models can be devised for almost any purpose. Thus they are examples of
methods Uttal calls “all too powerful” (1999, p.60). His reference is to Fourier
methods applied to putative visual processing, but the idea is the same. The
generality of networks (and associated techniques such as genetic algorithms)
to simulate dynamical processes is enormous.

In the recent paper by Rouder, et al. (2000), the researchers make the
following statement about their network model in their General Discussion: “The
model successfully explains performance in three object identification tasks,
quantitatively accounting for naming latencies and their distributions, accuracy
rates, and probability correct in forced choice” (p. 18, italics mine). What does
“explain” mean here? Presumably, the model has successfully instantiated the
assumptions of their theory and shown thereby to simulate extant data. But is
the network the explanatory device, or is the theory somehow programmed into
the network? We would not say a computer program explained a particular
electromagnetic phenomenon by solving Maxwell’s equations. Maxwell’s
theory explained the phenomenon; the computer, properly programmed, only
did the calculations. Actually, what | believe Rouder, et al. mean is that
because their theory could be successful in a network, alternative theories (e.g.,
those requiring some “representational” process) were either unnecessary, or
inadequate. This situation harks back to the controversy in cognitive
psychology | alluded to at the beginning of this essay. What is at issue here are
differences in overall theoretical approaches to the same problem. Some
behavior analysts might be bemused by this controversy, but the question of
just what neural networks can explain, if anything, remains wherever they are
used (Ellis & Humphreys, 1999). My sense is that many neural network
modelers do see networks as explanatory mechanisms because they believe
them to possess physiological relevance {(e.g., Donahoe, et al., 1997). In other
words, the network is acting like a brain. To stretch a point, if the model is
successful, then perhaps that’s the way the brain does it.

Why are they so effective simulators, especially in the domain we call
“learning”? First, they share common properties with other of dynamical
processes as indicated in the first part of this essay. More particularly,
behavioral control and change as we understand it through say, conditioning
theory and experimentation, is subject to a dynamical systems approach as with
any other process subject to change---from mechanical and electrical systems
to developmental processes in biology, natural selection, population genetics,
biochemical limit cycles, predator-prey interaction, etc. (see, e.g., Killeen, 1992
and Marr, 1992; 1997(a) for more detail here). Second, network models, at a
minimum, capture three major {one could almost say axiomatic) aspects of
behavioral change: (1) some form of selective association, {2) some form of a
memory, and (3) some variation of a delta rule or feedback process that drives
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the system toward fields of stable or meta-stable attractors. Given all the
options for programming these aspects, no wonder these models are so
powerful. Thus, any given model is, to say the least, underdetermined; perhaps
an infinity of other networks with different properties might do equally well, if
not better. One could counter that all models are underdetermined, as indeed
they are. However, few seem as unconstrained as a network system.

But, the retort of many a serious neural network modeler of learning is
that they are constrained---by what we know of the nervous system and its role
in learning. This is a principal assertion of Donahoe, et al. (1997), and current
information about neural mechanisms of conditioning clearly guided the design
of their model. Generally, from the perspective of psychology most treatments
of network design begin with a discussion of real neural systems, and some
treatments are quite sophisticated (e.g., Anderson, 1995). Despite this
deference to the brain, as one who has taught neurophysiology, | remain deeply
unimpressed. As I said in a previous discussion of this issue: “...in comparison
with any proposed or known actual neural circuits (never mind big chunks of
brain with perhaps billions of cells) in the cortex, the retina, the thalamus, the
hippocampus, the cerebellum, and so forth, network models are a joke. Just
as Woody Allen described War and Peace (“It’s about Russia”), network models
are “about the nervous system” {Marr, 1997(b), p. 234).

On what is this assertion based? The anatomy and physiology of a
single neuron is, in itself immensely complex. For example, these cells occur
in a bewildering variety of sizes and shapes; in no other organ system is there
anything like the variety of cells found in the nervous system (and only about
10% of the total are neurons; most of the rest are varieties of glial cells). In the
primate retina alone, there are at least 80 different types of neurons {Sterling,
1998). This variety, in turn, has profound functional significance. Without
going into any detail, the anatomy of the cell (including axonic and dendritic
branching) affects its electrical properties that, in turn, modify or controt the
role of the cell in any neural circuit. The circuits themselves defy simple
description (see, e.g., Shepherd, 1998 for details). For example, a single
pyramidal cell in the cortex may have more than 20,000 synapses on it, each,
because of its position, or extent, or particular transmitter, etc., exerts a
differential influence on that postsynaptic cell. The known variety of different
synaptic interactions alone is huge, for example, serial, reciprocal, rectifying,
excitatory, inhibitory, axo-axonic, axo-dendritic, dendro-dendritic, electrical,
chemical, ionotropic, metabotropic, and neuro-modulated, to name but a few
possibilities. In myriad combinations these arrangements make up what are
called microcircuits and are probably the major regions undergoing the changes
reflecting what we call learning and memory. The possible modifications and
the processes bringing these changes about are also enormous and intricate.
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(The sorts of Hebbian-like, NMDA-driven mechanisms presently thought to
underlie long-term potentiation, for example, are probably only a tiny subset of
actual mechanisms of change).

Microcircuits are only a component of a large hierarchy of cellular
arrangements. At the next level are the /ocal circuits that are perhaps closer
to what neural network models are attempting to model. However, real local
circuits are far more complex, not only in the connections, but in the number
and variation of cell types, transmitter functions, time constants, ionic and
metabolic mechanisms, the relative role of passive spread through the circuit
versus action-potential-driven, as well as the inputs to, and outputs from the
circuit. It has been possible in certain cases (almost exclusively in a selected
subset of invertebrate systems) to trace out local circuits and relate their
operations to characteristic behaviors of the organism (e.g., Simmons & Young,
1999). Some local circuits have been described in vertebrate systems as waell,
but how a particular circuit arrangement relates to the behavior of the organism
is almost totally unknown. But whether we look at invertebrate or vertebrate
local circuits, one fact is clear: Given onfy the circuit, it is impossible to say
what it does in the sense of what, if any, behavior relates to it. One is in the
position of say, of trying to understand what Don Francisco is saying on the
Spanish-language variety show “Sabado Gigante” by examining a circuit board
inside the television!

Local circuits either alone or, much more commonly, in interaction with
other local circuits make up what are traditionally called “centers”, the next
stage of the neural hierarchy. Regions of the hypothalamus, cerebellum,
hippocampus, etc. are examples. These may comprise many millions of cells
with astronomical numbers of connections. The function of “centers” and their
interactions seem to be of major interest to most bio-psychologists and
cognitive neuroscientists, as the recent ocean of research with computerized
axial tomography (CAT)} and functional magnetic resonance imaging (fMRI)
scans attest. Perhaps neural network models might reflect the operation of
“centers” as opposed to single neurons, in other words, the elements making
up the architecture of the model would each represent huge numbers of cells
acting as a unit. The problem with this is that we have little or no idea how
interacting “centers” work in the brain either. For example, the primate visual
system is one of the most intensively studied and mapped in any vertebrate.
. Depending on who is counting and how, some 40 or more regions (“centers”?)
have been identified with more than 300 connections between them (e.g.,
Felleman & Van Essen, 1995). What are we to make of this? Now do we
know how we see? Of course not.

The unfathomable complexity of the vertebrate nervous system implies
that the reductive program of trying to understand molar behaviors from the
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perspective of the operations of real neural cells, or even “centers” is probably
extremely limited in its possible achievement. Uttal (1999) in his recent book
argues this point brilliantly, and asserts that because of inherent limitations on
reductive explanations of behavior based on physiology, efforts should be
directed toward a “new behaviorism”, a remarkable position for one who has
throughout his career been a major contributor to the analysis of sensory
mechanisms.

The problem of behavior-brain relations takes us back to complex non-
linear dynamical systems with potential self-organizational and emergent
properties. While the component functional units and their interactions are in
some way responsible for the outcomes of the system as a whole, it is
impossible to predict those outcomes by looking at the units themselves, in no
matter how much detail. An analogy is the n-body problem in astronomy
discussed earlier. With as few as three bodies, it is impossible to break the
system down by looking at how one body interacts with any other. in a word,
the system is irreducible, and here there are only three units! In the domain of
neural network models, we could have little or no understanding of what the
network was accomplishing by looking at what was happening to any given
unit, or even a collection of such units. In that sense, the models probably do
share properties with real neurons.

Reductionism is the virtual defining criterion of a science, but it is
practiced in at least two ways. Here | am following Nagel’s {1979) framework
concerning the logic of reductive explanation (see also Marr, 1990 for another
application). Nagel distinguishes between homogeneous and heterogeneous
reduction. Homogeneous reduction is essential to any scientific enterprise and
consists of delineating, defining, and organizing descriptions of some
phenomena of the world into what Ernst Mach might call an “economy of
thought”. There is a common set of terms as well as a common set of
variables entering into functional relations. Classical thermodynamics is one
example; modern dynamical systems theory is another. Behavior analysis, as
we commonly practice it, is also in this category. Examples include the sort of
quantitative theories | mentioned above, various other perspectives on
reinforcement, response differentiation, stimulus control, schedule patterns, and
the like, all for the stated purpose of the prediction, control, and interpretation
of behavior.

Heterogeneous reduction is best defined by a famous quote from
Skinner (1950, p. 193): “...any explanation of an observed fact which appeals
to events taking place somewhere else, at some other level of observation,
described in different terms, and measured, if at all, in different dimensions”.
Accounting for behavior in terms of neural functioning is an obvious example.
Just what “accounting for” means here is uncertain, but, in general, this is a
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laudable goal; and without question, studying actual neural systems in
conjunction with a behavior analysis has resulted in some major
accomplishments in addressing brain-behavior relations. However, as
mentioned before, such projects ultimately face severe limitations and
insurmountable difficulties. Moreover, | do not see neural networks, or their
computational system cousins, even in hybrid combinations, as enlightening us
much on the vertebrate brain-behavior problem, certainly in comparison with
studying rea/ brains.

So, what role can network models and their like play in behavior
analysis? At their best, they represent a homogeneous reductive approach in
simulating interesting behaviors based upon relatively few principles. One
major contribution is that they address changes in behavior---conditions of
acquisition, extinction, and, in general, transitions. Despite paying lip service
to transitional phenomena, most of the experimental efforts in the history of the
analysis of behavior have focused on the steady-state (see Marr, 1992 for a
discussion of this issue}. Happily, this trend is much less dominant than in the
past and we now see considerable interest, especially among quantitative
modelers, in behavior dynamics.

I have mentioned earlier that when it comes to integration and
prediction, network models seem to be deficient. The real dquestion is are they
inherently limited in this regard. Ellis and Humphreys {1999), for example,
acknowledge this problem, but note a couple of exceptions of models
conferring predictions and displaying “behaviors” that, at the time were
unexpected, yet were subsequently borne out by actual experiments. Given
such exceptions {and they truly are exceptions), then network models can
potentially fulfill all the criteria noted earlier for useful quantitative models of
behavior. Just what properties are essential for this to occur | cannot say, but
addressing this question provides a challenge to those applying the method to
behavior analysis. As indicated earlier, behavior itself manifests emergence,
Two examples are the patterns of responding under various contingencies of
reinforcement and the relational stimulus control exhibited as equivalence (see
alsc Rumbaugh, Washburn, & Hillix, 1996). Given the sort of basic conditions
programmed in most learning network models | mentioned earlier (e.g.,
association, memory, and feedback), could we demonstrate the emergence of
such behaviors as stimulus equivalence? Certainly, in this example, the
network should be “exposed” to no more training stimulus contingencies than
a normal subject in such an experiment. The basic question here is given a
particular architecture, what are the minimal network rules to yield the
maximum of behaviors? Clearly, much is left for exploration.

The other articles in This Issue attest to the range of interest and
application of these models and we should expect more from the behavior
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analysis community as researchers become familiar with the techniques. Many
students now have considerable computer expertise and sophistication, and the
next generation of able students in the experimental analysis of behavior,
undergraduate as well as graduate, should be exposed to a variety of
computational models applied to behavior analysis, as well those from cogpnitive
science where these kinds of models were developed and remain as basic
methods. More generally, we, as behavior analysts, need to establish a climate
where quantitative approaches to behavior are an inherent part of the
curriculum at all levels. This is a considerable challenge because most students
trained in the behavioral sciences are accordingly untrained in quantitative
methods, aside perhaps for an elementary course in statistics. Indeed, many
students choose fields like psychology precisely because they wish to avoid
rigorous science and mathematics courses. We can do little to affect that, but,
through proper exposure and instruction, we can encourage those who do have
an interest and talent in applying quantitative methods to the analysis of
behavior, and thus strengthen our science.
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