DETERMINANTES DE LA PROBABILIDAD DE PÉRDIDA ECONÓMICA EN EL SECTOR AGROPECUARIO MEXICANO

Contenido principal del artículo

Saúl Basurto Hernández
Sandra Galván Vargas

Resumen

El objetivo de este artículo es estimar un modelo de elección discreta para identificar los determinantes de la probabilidad de pérdida económica en el sector agropecuario mexicano. Para ello, empleamos información de 64 548 unidades de producción que reportan sus ingresos y gastos en la Encuesta Nacional Agropecuaria. Utilizando la ubicación de las parcelas, vinculamos los ingresos netos con el clima de corto y largo plazo, características de las parcelas, acceso al agua y mercados, y características sociodemográficas de los productores. Los resultados indican que el 45% de los productores registran pérdidas. Dicha probabilidad suele ser más alta cuando el(la) productor(a) es mujer, se reconoce como indígena, tiene pocos años de educación, usa yunta, la cantidad de tierra utilizada es menor, sus tierras son de temporal o ejidales o se encuentran a una gran altura sobre el nivel del mar.


DETERMINANTS OF THE PROBABILITY OF ECONOMIC LOSS IN THE MEXICAN AGRICULTURAL SECTOR


ABSTRACT


The purpose of this article is to estimate a discrete choice model to identify the main factors influencing the probability of getting losses in agriculture. To do that, we use data on 64,548 farms reporting revenues and costs in the Encuesta Nacional Agropecuaria. Using the location of each parcel within the farm, we match net revenues with long-term climate, short-term weather events, soil types, plot characteristics, water access, market access, and sociodemographic characteristics. The main results indicate that 45% of farms in the sample observe negative net revenues. Overall, the probability of getting losses increases when the farmer is a woman, recognizes himself as indigenous, has less education, uses oxen, uses less land (small-sized), has rainfed land, has ejidal land, or his agricultural fields are at high levels of altitude.

Detalles del artículo

Cómo citar
Basurto Hernández, S., & Galván Vargas, S. (2023). DETERMINANTES DE LA PROBABILIDAD DE PÉRDIDA ECONÓMICA EN EL SECTOR AGROPECUARIO MEXICANO. Investigación Económica, 83(327), 80–113. https://doi.org/10.22201/fe.01851667p.2024.327.86398

Citas

Ahmed, M.N. y Schmitz, P.M. (2015). Climate change impacts and the value of adaptation-can crop adjustments help farmers in Pakistan? International Journal of Global Warming, 8(2), pp. 231-257. https://doi.org/10.1504/IJGW.2015.071954

Allen, L.J. y Boote, K.J. (2000). Crop ecosystem responses to climatic change: Soybean. En: K.R. Reddy y H.F. Hodges (eds.), Climate Change and Global Crop Productivity (pp. 133-160). CABI Digital Library. https://doi.org/10.1079/9780851994390.0133

Bareille, F. y Chakir, R. (2023). The impact of climate change on agriculture: A repeat-Ricardian analysis. Journal of Environmental Economics and Management, 119, 102822. https://doi.org/10.1016/j.jeem.2023.102822

Beltrán, A., Basurto, S. y Mendelsohn, R. (2023). The impact of climate change on global agriculture: Evidence from the Ricardian literature. Paper presented at the 2023 Annual Meeting of the Agricultural and Applied Economics Association, Washington, DC.

Cameron, A.C. y Trivedi, P.K. (2011). Microeconometrics Using Stata. Revised Edition. [en línea] Disponible en: <https://www.stata-press.com/books/preview/mus2-preview.pdf>.

Chatzopoulos, T. y Lippert, C. (2016). Endogenous farm-type selection, endogenous irrigation, and spatial effects in Ricardian models of climate change. European Review of Agricultural Economics, 43(2), pp. 217-235. https://doi.org/10.1093/erae/jbv014

Da Cunha, D.A., Coelho, A.B. y Féres, J.G. (2015). Irrigation as an adaptive strategy to climate change: An economic perspective on Brazilian agriculture. Environment and Development Economics, 20(1), pp. 57-79. https://doi.org/1017/S1355770X14000102

DePaula, G. (2020). The distributional effect of climate change on agriculture: Evidence from a Ricardian quantile analysis of Brazilian census data. Journal of Environmental Economics and Management, 104, 102378. https://doi.org/10.1016/j.jeem.2020.102378

Etwire, P.M., Fielding, D. y Kahui, V. (2017). The impact of climate change on crop production in Ghana: A Structural Ricardian analysis [Economic Discussion Papers no. 1706]. University of Otago, Nueva Zelanda. [en línea] Disponible en: <https://ourarchive.otago.ac.nz/bitstream/handle/10523/7266/DP_1706.pdf?sequence=1>.

Fick, S.E. y Hijmans, R.J. (2017). WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), pp. 4302-4315. https://doi.org/10.1002/joc.5086

Galindo, L.M., Reyes, O. y Alatorre, J.E.E. (2015). Climate change, irrigation and agricultural activities in Mexico: A Ricardian analysis with panel data. Journal of Development and Agricultural Economics, 7(7), pp. 262-273. https://doi.org/10.5897/jdae2015.0650

Hossain, M.S., Arshad, M., Qian, L., Zhao, M., Mehmood, Y. y Kächele, H. (2019). Economic impact of climate change on crop farming in Bangladesh: An application of Ricardian method. Ecological Economics, 164, 106354. https://doi.org/10.1016/j.ecolecon.2019.106354

INEGI, Instituto Nacional de Estadística y Geografía (2012). Encuesta Nacional Agropecuaria 2012. México: INEGI. [en línea] Disponible en: <https://www.inegi.org.mx/programas/ena/2012/>.

INEGI (2014). Encuesta Nacional Agropecuaria 2014. México: INEGI. [en línea] Disponible en: <https://www.inegi.org.mx/programas/ena/2014/>.

INEGI (2014b). Conjunto de datos vectoriales. Perfiles de suelos. Escala 1:1 000 000. México: INEGI. [en línea] Disponible en: <http://www.beta.inegi.org.mx/app/biblioteca/ficha.html?upc=702825267636>.

INEGI (2017). Encuesta Nacional Agropecuaria 2017. México: INEGI. [en línea] Disponible en: <https://www.inegi.org.mx/programas/ena/2017/>.

INEGI (2019). Encuesta Nacional Agropecuaria 2019. México: INEGI. [en línea] Disponible en: <https://www.inegi.org.mx/programas/ena/2019/>.

Issahaku, Z.A. y Maharjan, K.L. (2014). Climate change impact on revenue of major food crops in Ghana: Structural Ricardian cross-sectional analysis. En: Lall Maharjan, J. (ed.), Communities and Livelihood Strategies in Developing Countries (pp. 13-32). Springer Link.

Kabubo-Mariara, J. (2009). Global warming and livestock husbandry in Kenya: Impacts and adaptations. Ecological Economics, 68(7), pp. 1915-1924. https://doi.org/10.1016/j.ecolecon.2009.03.002

Kurukulasuriya, P. (2006). Economic impact of climate change on African agriculture. Tesis de Doctorado. Yale University, New Haven, CT. [en línea] Disponible en: <https://www.proquest.com/docview/304979706?pq-origsite=gscholar&fromopenview=true>.

Kurukulasuriya, P. y Mendelsohn, R.O. (2007). Endogenous irrigation: The impact of climate change on farmers in Africa [World Bank Policy Research Working Paper no. 4278]. World Bank, Washington, DC. [en línea] Disponible en: <https://documents1.worldbank.org/curated/en/398301468004476471/pdf/wps4278.pdf>.

Kurukulasuriya, P. y Mendelsohn, R. (2008). Crop switching as a strategy for adapting to climate change. African Journal of Agricultural and Resource Economics, 2(311-2016-5522), pp. 105-126. https://doi.org/10.22004/ag.econ.56970

Kurukulasuriya, P., Kala, N. y Mendelsohn, R. (2011). Adaptation and climate change impacts: a structural Ricardian model of irrigation and farm income in Africa. Climate Change Economics, 2(02), pp. 149-174. https://doi.org/10.1142/s2010007811000255

Mendelsohn, R.O. y Dinar, A. (2009). Climate Change and Agriculture: An Economic Analysis of Global Impacts, Adaptation and Distributional Effects. Edward Elgar Publishing. [en línea] Disponible en: <https://environment.yale.edu/bibcite/reference/2123>.

Mendelsohn, R., Nordhaus, W.D. y Shaw, D. (1994). The impact of global warming on agriculture: A Ricardian analysis. The American Economic Review, 753-771. [en línea] Disponible en: <https://www.jstor.org/stable/2118029>.

Nicita, L., Cucuzza, G., De Salvo, M., Prato, C. y Signorello, G. (2020). Spatial effects and endogeneity in a Ricardian model of climate change: An application to a Mediterranean region. Spatial Economic Analysis, 15(3), pp. 219-237. https://doi.org/10.1080/17421772.2020.1773520

Ortiz‐Bobea, A. (2020). The role of nonfarm influences in Ricardian estimates of climate change impacts on US agriculture. American Journal of Agricultural Economics, 102(3), pp. 934-959. https://doi.org/10.1093/ajae/aaz047

Reddy, K.R., Hodges, H.F. y Kimball, B.A. (2000). Crop ecosystem responses to climatic change: cotton. En: K.R. Reddy y H.F. Hodges (eds.), Climate Change and Global Crop Productivity (pp. 161-187). CABI Digital Library. https://doi.org/10.1079/9780851994390.0161

Ricardo, D. (1817). On the Principles of Political Economy and Taxation. Londres. [en línea] Disponible en: <https://socialsciences.mcmaster.ca/econ/ugcm/3ll3/ricardo/Principles.pdf>.

Seo, S.N. y Mendelsohn, R.O. (2007). The Impact of Climate Change on Livestock Management in Africa: A Structural Ricardian Analysis. Vol. 4279. Washington, DC: World Bank Publications. https://doi.org/10.1596/1813-9450-4279

Seo, S.N. y Mendelsohn, R. (2008). A structural ricardian analysis of climate change impacts and adaptations in African agriculture [World Bank Policy Research Working Paper no. 4603]. World Bank, Washington, DC. [en línea] Disponible en: <https://documents1.worldbank.org/curated/en/467731468203352332/pdf/WPS4603.pdf>.

Timmins, C. (2006). Endogenous land use and the Ricardian valuation of climate change. Environmental and Resource Economics, 33, pp. 119-142. https://doi.org/10.1007/s10640-005-2646-9

Upananda, V. y Abeysinghe, H.K.I.P. (2021). A review of literature in applying the Ricardian model to analyse economic impact of climate change on agriculture. Proceedings of the 7th International Research Conference on Humanities & Social Sciences (IRCHSS) 2021, March 21. [en línea] Disponible a través de: SSRN, <https://ssrn.com/abstract=3809111>.

Wooldridge, J.M. (2015). Introductory Econometrics: A Modern Approach. Boston, MA: Cengage Learning. [en línea] Disponible en: <https://economics.ut.ac.ir/documents/3030266/14100645/Jeffrey_M._Wooldridge_Introductory_Econometrics_A_Modern_Approach__2012.pdf>.

Wouters, H. (2021). Global bioclimatic indicators from 1979 to 2018 derived from reanalysis. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.bce175f0 [Consultado el 15 de mayo de 2023].

Young, K.J. y Long, S.P. (2000). Crop ecosystem responses to climatic change: Maize and sorghum. En: K.R. Reddy y H.F. Hodges (eds.), Climate Change and Global Crop Productivity (pp. 107-131). CABI Digital Library. https://doi.org/10.1079/9780851994390.0107