Evaluating AI-Personalized Learning Interventions in Distance Education

Main Article Content

Sajida Bhanu Panwale
Selvaraj Vijayakumar

Abstract

This study aimed to evaluate the utility of artificial intelligence (AI) in improving the persuasive communication skills of online Master of Business Administration (MBA) students. In particular, this study investigated the influence of personalization through AI using the Google Gemini platform on conventional and online instructional approaches. This quasi-experimental study used a pretest and posttest design to compare two groups of MBA students pursuing persuasive online communication. The experimental group (n = 32) interacted with the AI-based personalized learning materials, whereas the control group (n = 32) used standard instructor-designed online modules. During the 12-week intervention period, the experimental group was provided with customized practice activities. Conversely, the control group was offered conventional online learning material. The effectiveness of both approaches was evaluated using pretests and posttests. The results of Tukey’s Honestly Significant Difference (HSD) test provided insight into the areas where AI-based personalized learning had a statistically significant impact. These results support the conclusions derived from an analysis of variance and further validate the study’s research hypotheses. This study demonstrates the advantages of incorporating AI into language development for remote learners and offers valuable insights for integrating AI-driven technologies into distance education.

Article Details

How to Cite
Panwale, S. B., & Vijayakumar, S. (2025). Evaluating AI-Personalized Learning Interventions in Distance Education. Revista Mexicana De Bachillerato a Distancia, 17(34). https://doi.org/10.22201/cuaed.20074751e.2025.34.92857

Citas en Dimensions Service

References

Andrade, H. G. (2000). Using rubrics to promote thinking and learning. Educational Leadership, 57(5), 13-19.

Chen, X., Zou, D., Cheng, G., & Xie, H. (2021, 1 de julio). Artificial intelligence-assisted personalized language learning: Systematic review and co-citation analysis. En M. Chang, N.-S. Chen, D. G. Sampson, & A. Tlili (Eds.), Proceedings: IEEE 21st International Conference on Advanced Learning Technologies (ICALT) (pp. 241-245). https://doi.org/10.1109/ICALT52272.2021.00079 DOI: https://doi.org/10.1109/ICALT52272.2021.00079

Chiu, T. K. F., Moorhouse, B. L., Chai, C. S., & Ismailov, M. (2023, 6 de febrero). Teacher support and student motivation to learn with Artificial Intelligence (AI) based chatbots. Interactive Learning Environments, 1-

https://doi.org/10.1080/10494820.2023.2172044 DOI: https://doi.org/10.1080/10494820.2023.2172044

Chiu, T. K. F., Xia, Q., Zhou, X., Chai, C. S., & Cheng, M. (2023). Systematic literature review on opportunities, challenges, and future research recommendations of artificial intelligence in education. Computers and Education: Artificial Intelligence, 4, Artículo 100118. https://doi.org/10.1016/j.caeai.2022.100118 DOI: https://doi.org/10.1016/j.caeai.2022.100118

Crawford, J., Cowling, M., & Allen, K.-A. (2023). Se necesita liderazgo para un ChatGPT ético: Character assessment and learning using artificial intelligence (AI). Journal of University Teaching & Learning Practice, 20(3), Artículo 02. https://doi.org/10.53761/1.20.3.02 DOI: https://doi.org/10.53761/1.20.3.02

Crompton, H., y Burke, D. (2023). Artificial intelligence in higher education: The state of the field. International Journal of Educational Technology in Higher Education, 20(1), Artículo 22. https://doi.org/10.1186/s41239-023-00392-8 DOI: https://doi.org/10.1186/s41239-023-00392-8

DiBenedetto, M. K., & Bembenutty, H. (2011). Diferencias entre la autoeficacia para el aprendizaje y para el empleo de los estudiantes de MBA a tiempo completo y a tiempo parcial: Una perspectiva de autorregulación. The International Journal of Educational and Psychological Assessment, 7(1), 81-110. https://www.researchgate.net/publication/281466153_Differences_between_full-

time_and_part-time_MBA_students'_self-efficacy_for_learning_and_for_employment_A_self- regulatory_perspective

Francis, R. (2012). Cursos de comunicación empresarial en el plan de estudios de MBA: A reality check (Corpus ID: 56263598). Semantic Scholar. https://www.semanticscholar.org/paper/Business-Communication- Courses-in-the-MBA-A-Reality-Francis/ebc9594a269889c3c14e91edd8d075c52676fd6b

Huang, X., Zou, D., Cheng, G., Chen, X., & Xie, H. (2023). Trends, research issues and applications of artificial intelligence in language education. Educational Technology & Society, 26(1), 112-131. https://www.jstor.org/stable/48707971

Istenič, A. (2021). Online learning under COVID-19: Re-examining the prominence of video-based and text- based feedback. Educational Technology Research and Development, 69(1), 117-121. https://doi.org/10.1007/s11423-021-09955-w DOI: https://doi.org/10.1007/s11423-021-09955-w

Jadhav, S. V., Shinde, S. R., Dalal, D. K., Deshpande, T. M., Dhakne, A. S., & Gaherwar, Y. M. (2023).

Improve communication skills using AI. In P. B. Mane & A. R. Buchade (Chairs), Proceedings of the 2023 International Conference on Emerging Smart Computing and Informatics (ESCI) (pp. 1-5). IEEE. https://doi.org/10.1109/ESCI56872.2023.10099941 DOI: https://doi.org/10.1109/ESCI56872.2023.10099941

Liang, J.-C., Hwang, G.-J., Chen, M.-R. A., & Darmawansah, D. (2021). Roles y focos de investigación de la inteligencia artificial en la enseñanza de idiomas: An integrated bibliographic analysis and systematic review approach. Interactive Learning Environments, 31(7), 4270-4296. https://doi.org/10.1080/10494820.2021.1958348 DOI: https://doi.org/10.1080/10494820.2021.1958348

Liu, C., Hou, J., Tu, Y.-F., Wang, Y., & Hwang, G.-J. (2021). Incorporating reflective thinking promoting mechanism into artificial intelligence-supported English writing environments. Interactive Learning Environments, 31(9), 5614-5632. https://doi.org/10.1080/10494820.2021.2012812 DOI: https://doi.org/10.1080/10494820.2021.2012812

Long, S., & McLaren, M.-R. (2024). Belonging in remote higher education classrooms: The dynamic interaction of intensive modes of learning and arts-based pedagogies. Journal of University Teaching and Learning Practice, 21(2), Artículo 03. https://doi.org/10.53761/1.21.2.03 DOI: https://doi.org/10.53761/a9cxg327

Lund, B. D., Wang, T., Mannuru, N. R., Nie, B., Shimray, S., & Wang, Z. (2023). ChatGPT y una nueva realidad académica: Artificial Intelligence-written research papers and the ethics of the large language models in scholarly publishing. Journal of the Association for Information Science and Technology, 74(5), 570-581. https://doi.org/10.1002/asi.24750 DOI: https://doi.org/10.1002/asi.24750

Maghsudi, S., Lan, A., Xu, J., & van der Schaar, M. (2021). Educación personalizada en la era de la inteligencia artificial: What to expect next. IEEE Signal Processing Magazine, 38(3), 37-50. https://doi.org/10.1109/msp.2021.3055032 DOI: https://doi.org/10.1109/MSP.2021.3055032

McGraw, P., y Tidwell, A. (2001). Teaching group process skills to MBA students: A short workshop.

Education+ Training, 43(3), 162-171. https://doi.org/10.1108/EUM0000000005461 DOI: https://doi.org/10.1108/EUM0000000005461

Moskal, B. M. (2000). Scoring rubrics: ¿Qué, cuándo y cómo? Practical Assessment, Research, and Evaluation, 7(3). https://doi.org/10.7275/a5vq-7q66

Obari, H., Lambacher, S., & Kikuchi, H. (2020). The impact of using AI and VR with blended learning on English as a foreign language teaching. En F. Karen-Margrete, L. Sanne, B. Linda, & T. Sylvie (Eds.), CALL for widening participation: Short papers from EUROCALL 2020 (pp. 253-258). Research-publishing.net. https://doi.org/10.14705/rpnet.2020.48.1197 DOI: https://doi.org/10.14705/rpnet.2020.48.1197

Ongus, R. W., Gekara, M. M., & Nyamboga, C. M. (2017). Prestación de servicios bibliotecarios y de información a estudiantes de posgrado a tiempo parcial: A case study of Jomo Kenyatta Memorial Library, University of Nairobi, Kenia. Journal of Information and Knowledge, 54(1), 1-17. https://doi.org/10.17821/srels/2017/v54i1/108529 DOI: https://doi.org/10.17821/srels/2017/v54i1/108529

Paterson, C., Paterson, N., Jackson, W., & Work, F. (2020). What are students' needs and preferences for academic feedback in higher education? A systematic review. Nurse Education Today, 85, Artículo 104236. https://doi.org/10.1016/j.nedt.2019.104236 DOI: https://doi.org/10.1016/j.nedt.2019.104236

Palincsar, A. S., & Herrenkohl, L. R. (2002). Designing collaborative learning contexts. Theory Into Practice, 41(1), 26-

https://doi.org/10.1207/s15430421tip4101_5 DOI: https://doi.org/10.1207/s15430421tip4101_5

Randolph, W. A. (2008). Educating part-time MBAs for the global business environment. Journal of College Teaching & Learning (TLC), 5(8). https://doi.org/10.19030/tlc.v5i8.1236 DOI: https://doi.org/10.19030/tlc.v5i8.1236

Sánchez-Villalon, P. P. S., & Ortega, M. (2007). AWLA y AIOLE para entornos personales de aprendizaje.

International Journal of Continuing Engineering Education and Life-Long Learning, 17(6), 418-

https://doi.org/10.1504/IJCEELL.2007.015591 DOI: https://doi.org/10.1504/IJCEELL.2007.015591

Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and quasi-experimental designs for generalized causal inference. Houghton Mifflin.

Shevchenko, V., Malysh, N., & Tkachuk-Miroshnychenko, O. (2021). Distance learning in Ukraine in COVID-19 emergency. Open Learning: The Journal of Open, Distance and E-Learning, 39(1), 4-

https://doi.org/10.1080/02680513.2021.1967115 DOI: https://doi.org/10.1080/02680513.2021.1967115

Suen, H.-Y., Hung, K.-E., & Lin, C.-L. (2020). Agentes de entrevista de vídeo inteligentes utilizados para predecir la habilidad de comunicación y los rasgos de personalidad percibidos. Human- Centric Computing and Information Sciences, 10(1), Artículo 3. https://doi.org/10.1186/s13673- 020-0208-3

Tomasik, M. J., Helbling, L. A., & Moser, U. (2020). Educational gains of in-person vs. distance learning in primary and secondary schools: A natural experiment during the COVID-19 pandemic school closures in Switzerland. International Journal of Psychology, 56(4), 566-576. https://doi.org/10.1002/ijop.12728 DOI: https://doi.org/10.1002/ijop.12728

Wang, J., & Mendori, T. (2012). A customizable language learning support system using course-centered ontology and teaching method ontology. En T. Matsuo, K. Hashimoto, & S. Hirokawa (Eds.), 2012 IIAI International Conference on Advanced Applied Informatics (149-152). IEEE. https://doi.org/10.1109/IIAI-AAI.2012.38 DOI: https://doi.org/10.1109/IIAI-AAI.2012.38

Wang, X., Liu, Q., Pang, H., Tan, S. C., Lei, J., Wallace, M. P., & Li, L. (2023). What matters in AI-supported learning: A study of human-AI interactions in language learning using cluster analysis and epistemic network analysis. Computers & Education, 194, Artículo 104703. https://doi.org/10.1016/j.compedu.2022.104703 DOI: https://doi.org/10.1016/j.compedu.2022.104703

Zhao, X. (2022). Leveraging artificial intelligence (AI) technology for English writing: Introducing Wordtune as a digital writing assistant for EFL writers. RELC Journal, 54(3), 890-894. https://doi.org/10.1177/00336882221094089 DOI: https://doi.org/10.1177/00336882221094089