Perspectives on conversion of waste oil into energy sources: a narrative bibliographical review on characteristics, production, pyrolysis and bio-oil
Main Article Content
Abstract
Seeking to reduce the environmental impacts caused by residual frying oil, various strategies are being investigated to convert this waste into a usable form of energy. The present work seeks to carry out a narrative bibliographic review on possibilities for converting waste oil into energy sources, emphasizing the study of its characteristics, production processes, the application of pyrolysis in this context and the subsequent use of bio-oil as a raw material renewable. For this study, the search keywords “residual frying oil”, “pyrolysis” and “bio-oil” were used in search bases such as Science direct and google academic. The literature review offers a comprehensive and critical view of these topics, consolidating relevant information on the conversion of this waste into some type of energy source, from obtaining residual oil to the practical applications of bio-oil resulting from pyrolysis. Through this study and bibliographical survey, it is possible to verify the importance of correctly disposing of waste oil, in addition to the potential of the approaches discussed for the energy recovery of waste oil, as well as future directions for research in this promising field.
Article Details
Citas en Dimensions Service
References
Aadil, K. R., Barapatre, A., Sahu, S., Jha, H., Tiwary, B. N., (2014) Free radical scavenging activity and reducing power of Acacia nilotica wood lignin. International Journal of Biological Macromolecules., 67, 220–227.
Ali, N., Saleem, M., Shahzad, K., Chughtai, A., (2015) Bio-Oil Production from Fast Pyrolysis of Cotton Stalk in Fluidized Bed Reactor. Arabian Journal for Science and Engineering., 40, 3019–3027.
Antonic, B., Dordevic, D., Jancikova, S., Tremlova, B., Nejezchlebova, M., Goldová, K., Treml, J., (2021) Reused Plant Fried Oil: A Case Study with Home-Made Soaps. Processes., 9, 529.
Binbuga, N., Chambers, K., Henry, W. P., Schultz, T. P., (2005) Metal chelation studies relevant to wood preservation.1. Complexation of propyl gallate with Fe2+. Holzforschung., 59, 205–209.
Brännström, H., Kumar, H., Alén, R., (2018) Current and Potential Biofuel Production from Plant Oils. BioEnergy Research., 11, 592–613.
Bridgwater, A., Czernik, S., Diebold, J., Meier, D., Oasmaa, A., Peacocke, C., Piskorz, J., Radlein, D., (1999) Fast pyrolysis of biomass: a handbook. Aston Univ., Birmingham (United Kingdom).
Bridgwater, A. V., 2012: Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy., 38, 68–94.
C. Jinzhen, J. Xiao, (2014) Deterioration and Protection of Sustainable Biomaterials. American Chemical Society, Washington, DC, Vol. 1158.
Carrasco, J. L., Gunukula, S., Boateng, A. A., Mullen, C. A., DeSisto, W. J., Wheeler, M. C., (2017) Pyrolysis of forest residues: An approach to techno-economics for bio-fuel production. Fuel., 193, 477–484.
Cheng, G., Zhang, M., Lu, Y., Zhang, Y., Lin, B., Von Lau, E., (2024) A novel method for the green utilization of waste fried oil. Particuology., 84, 1–11.
Chhetri, A., Watts, K., Islam, M., (2008) Waste Cooking Oil as an Alternate Feedstock for Biodiesel Production. Energies., 1, 3–18.
Czernik, S., Johnson, D. K., Black, S., (1994) Stability of wood fast pyrolysis oil. Biomass and Bioenergy., 7, 187–192.
Czernik, S., Bridgwater, A. V., 2004: Overview of applications of biomass fast pyrolysis oil. Energy and Fuels., 18, 590–598.
Daud, N. M., Sheikh Abdullah, S. R., Abu Hasan, H., Yaakob, Z., (2015) Production of biodiesel and its wastewater treatment technologies: A review. Process Safety and Environmental Protection., 94, 487–508.
Demirbas, A., (2008) Relationships derived from physical properties of vegetable oil and biodiesel fuels. Fuel., 87, 1743–1748.
Demirbas, A., Al-Ghamdi, K., Sen, N., Aslan, A., Alalayah, W. M., (2017) Gasoline- and diesel-like products from heavy oils via catalytic pyrolysis. Petroleum Science and Technology., 35, 1607–1613.
El-Araby, R., 2024: Biofuel production: exploring renewable energy solutions for a greener future. Biotechnol Biofuels., 17, 129.
Elliott, D. C., (1994) Water, alkali and char in flash pyrolysis oils. Biomass and Bioenergy., 7, 179–185.
Fonts, I., Gea, G., Azuara, M., Ábrego, J., Arauzo, J., 2012: Sewage sludge pyrolysis for liquid production: A review. Renewable and Sustainable Energy Reviews., 16, 2781–2805.
Fortes, I. C. P., Baugh, P. J., (2004) Pyrolysis–GC/MS studies of vegetable oils from Macauba fruit. Journal of Analytical and Applied Pyrolysis., 72, 103–111.
Gary, J. H., Handwerk, J. H., Kaiser, M. J., Geddes, D., (2007) Petroleum Refining. CRC Press.
Huang, X., 2009: Fabrication and Properties of Carbon Fibers. Materials., 2, 2369–2403.
Idem, R. O., Katikaneni, S. P. R., Bakhshi, N. N., (1996) Thermal Cracking of Canola Oil: Reaction Products in the Presence and Absence of Steam. Energy & Fuels., 10, 1150–1162.
Jacobson, K., Maheria, K. C., Kumar Dalai, A., (2013) Bio-oil valorization: A review. Renewable and Sustainable Energy Reviews., 23, 91–106.
Jalil, P. A., (2002) Investigations on polyethylene degradation into fuel oil over tungstophosphoric acid supported on MCM-41 mesoporous silica. Journal of Analytical and Applied Pyrolysis., 65, 185–195.
Kim, K. H., Jeong, H. S., Kim, J. Y., Han, G. S., Choi, I. G., Choi, J. W., (2012) Evaluation of the antifungal effects of bio-oil prepared with lignocellulosic biomass using fast pyrolysis technology. Chemosphere., 89, 688–693.
Kraiem, T., Hassen, A. Ben, Belayouni, H., Jeguirim, M., (2017) Production and characterization of bio-oil from the pyrolysis of waste frying oil. Environmental Science and Pollution Research., 24, 9951–9961.
Li, Y., Liu, Z., Dong, X., Fu, Y., Liu, Y., (2013) Comparison of decay resistance of wood and wood-polymer composite prepared by in-situ polymerization of monomers. International Biodeterioration & Biodegradation., 84, 401–406.
Li, Y., Jin, Y., Li, J., Chen, Y., Gong, Y., Li, Y., Zhang, J., (2016) Current Situation and Development of Kitchen Waste Treatment in China. Procedia Environmental Sciences., 31, 40–49.
Lima, D. G., Soares, V. C. D., Ribeiro, E. B., Carvalho, D. A., Cardoso, É. C. V., Rassi, F. C., Mundim, K. C., Rubim, J. C., Suarez, P. A. Z., (2004) Diesel-like fuel obtained by pyrolysis of vegetable oils. Journal of Analytical and Applied Pyrolysis., 71, 987–996.
Lourençon, T. V., Mattos, B. D., Cademartori, P. H. G., Magalhães, W. L. E., (2016) Bio-oil from a fast pyrolysis pilot plant as antifungal and hydrophobic agent for wood preservation. Journal of Analytical and Applied Pyrolysis., 122, 1–6.
Nerı́n, C., Domeño, C., Moliner, R., Lázaro, M. J., Suelves, I., Valderrama, J., (2000) Behaviour of different industrial waste oils in a pyrolysis process: metals distribution and valuable products. Journal of Analytical and Applied Pyrolysis., 55, 171–183.
Nigam, P. S., Singh, A., 2011: Production of liquid biofuels from renewable resources. Progress in Energy and Combustion Science., 37, 52–68.
Oasmaa, A., Van De Beld, B., Saari, P., Elliott, D. C., Solantausta, Y., (2015) Norms, Standards, and Legislation for Fast Pyrolysis Bio-oils from Lignocellulosic Biomass. Energy and Fuels., 29, 2471–2484.
Pedroza, M. M., de Oliveira, M. C. C. R., da Cunha Silva Paz, E., Arruda, M. G., Júnior, J. C. Z., do Nascimento Lôbo, R., (2022) Mass balance and characterization of bio-oil from sludge pyrolysis generated in the treatment of effluent from the biodiesel industry. Journal of Material Cycles and Waste Management., 24, 2303–2313.
Pires, A. P. P., Arauzo, J., Fonts, I., Domine, M. E., Fernández Arroyo, A., Garcia-Perez, M. E., Montoya, J., Chejne, F., Pfromm, P., Garcia-Perez, M., (2019) Challenges and Opportunities for Bio-oil Refining: A Review. Energy & Fuels., 33, 4683–4720.
Prauchner, M. J., Pasa, V. M. D., Otani, C., Otani, S., de Menezes, S. M. C., (2004) Eucalyptus tar pitch pretreatment for carbon material processing. Journal of Applied Polymer Science., 91, 1604–1611.
Sánchez-Borrego, F. J., Álvarez-Mateos, P., García-Martín, J. F., (2021) Biodiesel and Other Value-Added Products from Bio-Oil Obtained from Agrifood Waste. Processes., 9, 797.
Schwab, A. W., Dykstra, G. J., Selke, E., Sorenson, S. C., Pryde, E. H., (1988) Diesel fuel from thermal decomposition of soybean oil. Journal of the American Oil Chemists’ Society., 65, 1781–1786.
Silva, R. F. B. Da, Batistella, M., Moran, E., Celidonio, O. L. D. M., Millington, J. D. A., 2020) The Soybean Trap: Challenges and Risks for Brazilian Producers. Frontiers in Sustainable Food Systems., 4, 1-13.
Singh, S. P., Singh, D., (2010) Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review. Renewable and Sustainable Energy Reviews., 14, 200–216.
Soltes, J., Lin, S. C. K., (1984) Hydroprocessing of Biomass Tars for Liquid Engine Fuels. Progress in Biomass Conversion, 5, 1–68.
Souza-Ferrari, J., Nascimento, G. K. R., Lima, R. M., Lucena, G. A. S., Oliveira, D. A. A., Tomaz, S. S., Barbosa, D. A., (2022) Produção artesanal de sabões, tintas e velas ecológicas a partir de óleo residual de fritura como estratégia de educação ambiental. Extensão em foco., 27, 311.
Temiz, A., Akbas, S., Panov, D., Terziev, N., Alma, M. H., Parlak, S., Kose, G., (2013) Chemical Composition and Efficiency of Bio-oil Obtained from Giant Cane (Arundo donax L.) as a Wood Preservative. BioRes., 8, 2084-2098.
Thybring, E. E., (2013) The decay resistance of modified wood influenced by moisture exclusion and swelling reduction. International Biodeterioration & Biodegradation., 82, 87–95.
Vélez, D. C. P., Magalhães, W. L. E., Capobianco, G., (2018) Carbon fiber from fast pyrolysis bio-oil. Science and Technology of Materials., 30, 16–22.
Vieira, G. E. G., Romeiro, G. A., Sella, S. M., Damasceno, R. N., Pereira, R. G., (2009) Low temperature conversion (LTC) – An alternative method to treat sludge generated in an industrial wastewater treatment station – Batch and continuous process comparison. Bioresource Technology., 100, 1544–1547.
Vitolo, S., Bresci, B., Seggiani, M., Gallo, M. G., (2001) Catalytic upgrading of pyrolytic oils over HZSM-5 zeolite: behaviour of the catalyst when used in repeated upgrading–regenerating cycles. Fuel., 80, 17–26.
Wang, S., Yuan, C., Esakkimuthu, S., Xu, L., Cao, B., El-Fatah Abomohra, A., Qian, L., Liu, L., Hu, Y., (2019) Catalytic pyrolysis of waste clay oil to produce high quality biofuel. Journal of Analytical and Applied Pyrolysis., 141, 104633.
Wang, Y., Ke, L., Peng, Y., Yang, Q., Du, Z., Dai, L., Zhou, N., Liu, Y., Fu, G., Ruan, R., Xia, D., Jiang, L., (2020) Characteristics of the catalytic fast pyrolysis of vegetable oil soapstock for hydrocarbon-rich fuel. Energy Conversion and Management., 213, 112860.
Wiggers, V. R., Meier, H. F., Wisniewski, A., Chivanga Barros, A. A., Wolf Maciel, M. R., (2009) Biofuels from continuous fast pyrolysis of soybean oil: A pilot plant study. Bioresource Technology., 100, 6570–6577.
Wornat, M. J., Porter, B. G., Yang, N. Y. C., (1994) Single Droplet Combustion of Biomass Pyrolysis Oils. Energy & Fuels., 8, 1131–1142.
Xu, G., Yang, X., Spinosa, L., (2015) Development of sludge-based adsorbents: Preparation, characterization, utilization and its feasibility assessment. Journal of Environmental Management., 151, 221–232.
Yang, Z., Kumar, A., Huhnke, R. L., Buser, M., Capareda, S., (2016) Pyrolysis of eastern redcedar: Distribution and characteristics of fast and slow pyrolysis products. Fuel., 166, 157–165.
Zhang, X., Zhang, K., Wu, C., Liu, K., Jiang, K., (2020) Preparation of bio-oil and its application in asphalt modification and rejuvenation: A review of the properties, practical application and life cycle assessment. Construction and Building Materials, 262, 120528.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.