Simulation of PM2.5 behavior due to non-essential activities in poorly ventilated spaces

Main Article Content

José Antonio Martínez de Dios
Jesús Manuel Carrera Velueta
Elizabeth Magaña Villegas

Abstract

Indoor air quality has gained importance due to significant time people spend in these spaces unaware of the air they're exposed to. PM2.5 is a major indoor pollutant. Thus, this study aimed to analyze PM2.5 scenarios during activities like burning candles, incense, and mosquito coils, using mass balance models. Sparkler candles and spiral mosquito coils were the highest emission sources, with PM2.5 levels up to 12,124 µg/candle and 775 µg/min. Notably, a 30 m³ room burning a mosquito coil for 53 minutes led to poor air quality for 116 minutes. Similarly, a 60 m³ room with a sparkler candle generated poor air quality for 65 minutes. These findings reveal short-term emission sources can still compromise health due to high PM2.5 concentrations. Wind speed and room dimensions also mattered. This research informs individuals to engage in these activities more health-consciously.

Article Details

How to Cite
[1]
Martínez de Dios, J.A., Carrera Velueta, J.M. and Magaña Villegas, E. 2025. Simulation of PM2.5 behavior due to non-essential activities in poorly ventilated spaces. Revista AIDIS de ingeniería y ciencias ambientales: Investigación, desarrollo y práctica. 18, 1 (Apr. 2025), 78–93. DOI:https://doi.org/10.22201/iingen.0718378xe.2025.18.1.88117.

Citas en Dimensions Service

References

M Company. (2013) EVM Series Environmental Monitor, Manual de usuario, RevL 10(14), 180 pp. Consultado el 22 de octubre de 2024. Desde: https://multimedia.3m.com/mws/media/778991O/evm-7-environmental-monitor-series-user-manual.pdf

Branco, P., Alvim-Ferraz, M. C., Martins, F., Sousa, S. (2014) Indoor air quality in urban nurseries at Porto city: Particulate matter assessment, Atmospheric Environment, 84, 133–143. https://doi.org/10.1016/j.atmosenv.2013.11.035

Dacunto, P. J., Cheng, K., Acevedo-Bolton, V., Jiang, R., Klepeis, N. E., Repace, J., Ott, W. R., Hildemann, L. M. (2013) Real-time particle monitor calibration factors and PM2.5 emission factors for multiple indoor sources, Environmental Science: Processes & Impacts, 15(8), 1511-1519. https://doi.org/10.1039/c3em00209h

Del Jesús García Ricárdez, J., Villegas, E. (2018) Calidad del aire en la cafetería principal de la División Académica de Ciencias Biológicas-UJAT. Kuxulkab’, 24(50), 05–13. https://doi.org/10.19136/kuxulkab.a24n50.2416

De La Torre, J. A., Ronaldson, A., Alonso, J., Dregan, A., Mudway, I., Valderas, J. M., Vineis, P., Bakolis, I. (2023) The relationship between air pollution and multimorbidity: Can two birds be killed with the same stone?, European Journal of Epidemiology, 38(4), 349–353. https://doi.org/10.1007/s10654-022-00955-5

Dinoi, A., Feltracco, M., Chirizzi, D., Trabucco, S., Conte, M., Gregoris, E., Barbaro, E., La Bella, G., Ciccarese, G., Belosi, F., La Salandra, G., Gambaro, A., Contini, D. (2022) A review on measurements of SARS-CoV-2 genetic material in air in outdoor and indoor environments: Implication for airborne transmisión, Science of the Total Environment, 809, 151137. https://doi.org/10.1016/j.scitotenv.2021.151137

Fernández, L. C. M., Alvarez, R. A., González-Barcala, F., Portal, J. a. R. (2013) Indoor Air Contaminants and Their Impact on Respiratory Pathologies, Archivos De Bronconeumologia, 49(1), 22–27. https://doi.org/10.1016/j.arbr.2012.11.004

Guo, Z., Mosley, R., McBrian, J., Fortmann, R. (2000) Fine particulate matter emissions from candles. Engineering Solutions to Indoor Air Quality Problems Symposium, Air & Waste Management Association, 98, 211-225. Consultado el 15 de junio de 2023. Desde: https://www.researchgate.net/publication/259083475_Fine_Particulate_Matter_Emissions_from_Candles

Gutiérrez-Avila, I., Rojas-Bracho, L., Riojas-Rodríguez, H., Kloog, I., Just, A. C., Rothenberg, S. J. (2018) Cardiovascular and Cerebrovascular Mortality Associated With Acute Exposure to PM 2.5 in Mexico City, Stroke, 49(7), 1734–1736. https://doi.org/10.1161/strokeaha.118.021034

Hasager, F., Bjerregaard, J. D., Bonomaully, J., Knap, H. C., Afshari, A., Johnsson, M. S. (2020) Indoor Air Quality: Status and Standards, Encyclopedia of Sustainability Science and Technology, 1–28. https://doi.org/10.1007/978-1-4939-2493-6_1097-1

Hatta, M., Han, H. (2021) Predicting indoor PM2.5/PM10 concentrations using simplified neural network models, Journal of Mechanical Science and Technology, 35(7), 3249–3257. https://doi.org/10.1007/s12206-021-0645-6

Hernández-Cadena, L., Sanín-Aguirre, L. H., Campos, A. (2022) Relación entre consultas a urgencias por enfermedad respiratoria y contaminación atmosférica en Ciudad Juárez, Chihuahua, Salud Publica De México, 42(4). Consultado el 18 de junio de 2023. Desde: https://www.scielosp.org/pdf/spm/v42n4/2876.pdf

Herrera, S. R., Villegas, E. M., Velueta, J. M. C. (2016) Introducción a la modelación de la calidad del aire, del agua y del transporte de contaminantes en el suelo, 1a ed., UJAT. Consultado el 12 de junio de 2023. Desde: https://pcientificas.ujat.mx/index.php/pcientificas/catalog/view/45/40/168-1

Lee, S., Wang, B. L. (2006) Characteristics of emissions of air pollutants from mosquito coils and candles burning in a large environmental chamber, Atmospheric Environment, 40(12), 2128–2138. https://doi.org/10.1016/j.atmosenv.2005.11.047

Liu, C., Chen, R., Sera, F., Vicedo-Cabrera, A. M., Guo, Y., Tong, S., De Sousa Zanotti Stagliorio Coelho, M., Saldiva, P. H. N., Lavigne, E., Matus, P., Ortega, N. B., Garcia, S., Pascal, M., Stafoggia, M., Scortichini, M., Hashizume, M., Honda, Y., Hurtado-Díaz, M., Cruz, J., Kan, H. (2019) Ambient Particulate Air Pollution and Daily Mortality in 652 Cities, The New England Journal of Medicine, 381(8), 705–715. https://doi.org/10.1056/nejmoa1817364

Marta Morales, I., Blanco Acevedo, V., García Nieto, A. (2010) Calidad del aire interior en edificios de uso público, 1a ed., Comunidad de Madrid. Consultado el 10 de junio de 2023. Desde: https://www.madrid.org/bvirtual/BVCM020191.pdf

Martínez, P. O., Rodríguez-Fernández, A., Luengo, M. C., Tapia, O. L. (2020) Relación entre contaminación atmosférica y consultas por enfermedades respiratorias en atención primaria de urgencia, Revista Chilena De Enfermedades Respiratorias, 36(4), 260–267. https://doi.org/10.4067/s0717-73482020000400260

Martínez-Muñoz, A., Hurtado-Díaz, M., Cruz, J., Riojas-Rodríguez, H. (2020) Mortalidad aguda asociada con partículas suspendidas finas y gruesas en habitantes de la Zona Metropolitana de Monterrey, Salud Publica De Mexico, 62(5), 468–476. https://doi.org/10.21149/11184

Ministerio del Medio Ambiente. (2016) Guía de Calidad del Aire y Educación Ambiental, Ministerio de Medio Ambiente. Consultado el 13 de junio de 2023. Desde: https://mma.gob.cl/wp-content/uploads/2018/08/Guia-para-Docentes-Sobre-Calidad-del-Aire-003.pdf

Morawska, L., Goonetilleke, A., Bae, G., Buonanno, G., Chao, C., Clifford, S., Fu, S., Hänninen, O., He, C., Isaxon, C., Mazaheri, M., Salthammer, T., Waring, M. J., Wierzbicka, A. (2017) Airborne particles in indoor environment of homes, schools, offices and aged care facilities: The main routes of exposure, Environment International, 108, 75–83. https://doi.org/10.1016/j.envint.2017.07.025

Mostafa, M., Khalaf, H. N. B., Zhukovsky, M. (2021) Dynamic of particulate matter for quotidian aerosol sources in indoor air, Atmosphere, 12(12), 1682. https://doi.org/10.3390/atmos12121682

Navarro Kauil, J. (2019) Simulación de la calidad del aire en interiores para diferentes eventos mediante una herramienta digital, Tesis de Licenciatura, Universidad Juárez Autónoma de Tabasco, México, 66 pp.

Ongwandee, M., Pipithakul, W. (2010) Air pollutant emissions from the burning of incense, mosquito coils, and candles in a small experimental chamber, Applied Enviromental Research, 32, 69–79. Consultado el 22 de junio de 2023. Desde: https://doaj.org/article/69f7843d227b4f6f90615137aa75e9fa

Pérez-Sastré, M. A., Ortiz-Hernández, L. (2021) Cambios en la presión arterial de acuerdo con la estatura en adultos mexicanos, Revista De Saude Publica, 55, 87. https://doi.org/10.11606/s1518-8787.20210550032531

Romero, H. G., Montealegre, N. A., Piñeros, J. G., Ospina, D., Nieto, E. (2021) Relación de PM2,5 y Enfermedad Respiratoria Aguda en un territorio de Colombia: Modelos Aditivos Generalizados, Universidad Y Salud, 24(1), 45–54. https://doi.org/10.22267/rus.222401.256

See, S., Balasubramanian, R. (2011) Characterization of fine particle emissions from incense burning, Building and Environment, 46(5), 1074–1080. https://doi.org/10.1016/j.buildenv.2010.11.006

SEMARNAT, Secretaría de Medio Ambiente y Recursos Naturales (2023) Norma Oficial Mexicana NOM-172-SEMARNAT-2023, Diario Oficial de la Federación, jueves 25 de enero de 2024.

SSA, Secretaría de Salud (2021) Norma Oficial Mexicana NOM-025-SSA1-2021, Diario Oficial de la Federación, miércoles 27 de octubre de 2021.

Tirler, W., Settimo, G. (2015) Incense, sparklers and cigarettes are significant contributors to indoor benzene and particle levels, PubMed, 51(1), 28–33. https://doi.org/10.4415/ann_15_01_06

Torkmahalleh, M. A., Ospanova, S., Baibatyrova, A., Nurbay, S., Zhanakhmet, G., Shah, D. (2018) Contributions of burner, pan, meat and salt to PM emission during grilling, Environmental Research, 164, 11–17. https://doi.org/10.1016/j.envres.2018.01.044

Ubilla, C., Yohannessen, K. (2021) Contaminación atmosférica y asma en niños, Neumología Pediátrica, 16(4), 164–166. https://doi.org/10.51451/np.v16i4.464

Van Tran, V., Lee, Y., Lee, Y. I. (2020) Indoor Air Pollution, Related Human Diseases, and Recent Trends in the Control and Improvement of Indoor Air Quality, International Journal of Environmental Research and Public Health, 17(8), 2927. https://doi.org/10.3390/ijerph17082927

Zhang, A., Liu, Y., Zhao, B., Zhang, Y., Kan, H., Zhao, Z., Deng, F., Huang, C., Zeng, X., Sun, Y., Qian, H., Liu, W., Mo, J., Sun, C., Zheng, X. (2021) Indoor PM2.5 concentrations in China: A concise review of the literature published in the past 40 years, Building and Environment, 198, 107898. https://doi.org/10.1016/j.buildenv.2021.107898