Anaerobic codigestion of agroindustrial effluents: performance evaluation and modeling

Main Article Content

Larissa Augusta da Cruz
Andrieli Sena Lacerda
Izabel Melz Fleck
Leandro Fleck
https://orcid.org/0000-0001-8763-6404

Abstract

Studies that have carried out the anaerobic co-digestion of starch factory effluent with effluent from the animal blood processing agroindustry are unprecedented in the literature. The present study is based on the hypothesis that anaerobic co-digestion can be used for the efficient simultaneous treatment of wastewater from the production of cassava starch and effluent from the processing of cattle and pig blood. Sludge from an anaerobic biodigester applied to the treatment of wastewater from the production of cassava starch was used as an inoculum for the anaerobic co-digestion process. The factors temperature and operating time were controlled, and their effects on the parameters color, turbidity and chemical oxygen demand (COD) were evaluated using a Central Composite Rotational Design (CCRD), consisting of 11 experimental tests. For each response variable, a quadratic mathematical model was generated, validated by Analysis of Variance. The maximum turbidity, color and COD removal efficiency observed in the treatment system was 100%, 90.54% and 68.85%, respectively. A significant effect was observed for the interaction between operating time and operating temperature, when evaluating the COD removal efficiency. The mathematical models were not statistically significant, as for all dependent variables the p-value was higher than the adopted significance level, of 10%. The hypothesis about the possibility of carrying out anaerobic co-digestion of starch factory effluent and animal blood processing effluent was confirmed by the study and is an innovative possibility for the consortium for the treatment of organic waste generated by agro-industrial companies.

Article Details

How to Cite
[1]
da Cruz, L.A., Lacerda, A.S., Fleck, I.M. and Fleck, L. 2025. Anaerobic codigestion of agroindustrial effluents: performance evaluation and modeling. Revista AIDIS de ingeniería y ciencias ambientales: Investigación, desarrollo y práctica. 18, 2 (Aug. 2025), 206–221. DOI:https://doi.org/10.22201/iingen.0718378xe.2025.18.2.89091.

Citas en Dimensions Service

References

APHA, American Water Works Association (2012) Standard Methods for the Examination of Water and Wastewater. 22th ed. Washinton, DC – EUA: Ed. American Public Health Association, Water Environment Federation. 2012.

Bieluczyk, W., Cherubin, M. R., Cerri, C. E. P., Siqueira-Neto, M., Abdalla-Filho, A. L., Castro, J. I. A., Locatelli, J. L., Tsai, S. M., Camargo, P. B. (2024) Greenhouse gas fluxes in brazilian climate-smart agricultural and livestock systems: A systematic and critical overview. Journal of Cleaner Production, 464(1), 1-17. https://doi.org/10.1016/j.jclepro.2024.142782

Bhardwaj, A., Kumar, S., Singh, D. (2023) Tannery effluent treatment and its environmental impact: a review of current practices and emerging technologies. Water Quality Research Journal, 58(2), 128-152. https://doi.org/10.2166/wqrj.2023.002

Bhattacharya, S. (2021) Central Composite Design for response surface methodology and its application in pharmacy. Chapter, (1), 1-19. https://doi.org/10.5772/intechopen.95835

Chen, S., Zhang, J., Wang, X. (2015) Effects of alkalinity sources on the stability of anaerobic digestion from food waste. Waste Management & Research, 33(11), 1033-1040. https://doi.org/10.1177/0734242x15602965

Chidubem-Nwachinemere, N. O., Orji, M. U., Achugbu, A. N., Achugbu, O. E., Okali, U. O., Osilo, N. A. O. (2023) Physicochemical Composition of Cassava Mill Effluents in Five Processing Plants in Anambra State, Nigeria. World Wide Journal of Multidisciplinary Research and Development, 9(5), 31-34. https://wwjmrd.com/upload/physicochemical-composition-of-cassava-mill-effluents-in-five-processing-plants-in-anambra-state-nigeria_1685359205.pdf

Derringer G. C., Suich, R. (1980) Simultaneous optimization of several responses variables. Journal of Quality Technology, 12(4), 214-219. https://doi.org/10.1080/00224065.1980.11980968

Fleck, L., Tavares, M. H. F., Eyng, E. (2013) Conceitos e importância da modelagem matemática de qualidade da água para gestão dos recursos hídricos. Revista Ambiência, 9(3), 487-503. https://doi.org/10.5935/ambiencia.2013.03.03

Karki, R., Chuenchart, W., Surendra, K. C., Shrestha, S., Raskin, L., Sung, S., Hashimoto, A., Khanal, S. K. (2021) Anaerobic co-digestion: Current status and perspectives. Bioresource Technology, 330(1), 125001. https://doi.org/10.1016/j.biortech.2021.125001

Larsen, A. C., Gomes, B. M., Gomes, S. D., Zenatti, D. C., Torres, D. G. B. (2013) Anaerobic co-digestion of crude glycerin and starch industry effluent. Engenharia Agrícola, 33(2), 341-352. https://doi.org/10.1590/S0100-69162013000200013

Leite, V. D., Barros, A. J. M., Menezes, J. M., Sousa, J. T., Lopes, W. S. (2017) Codigestão anaeróbia de resíduos orgânicos. Revista DAE, 65(208), 35-46. https://doi.org/10.4322/dae.2017.004

Lerdlattaporn, R., Phalakornkule, C., Trakulvichean, S., Songkasiri, W. (2021) Implementing circular economy concept by converting cassava pulp and wastewater to biogas for sustainable production in starch industry. Sustainable Environment Research, 31(20), 1-12. https://doi.org/10.1186/s42834-021-00093-9

Martins Filho, J. B., Neves, R. A., Araújo, J. S., Ferrão, G. E., Pires, I. C. G. (2018) Resíduos orgânicos agropecuários e biodigestores: análise sobre a produção bibliográfica do período de 2000-2017. Revista Ibero-Americana de Ciências Ambientais, 9(5), 281-293. https://doi.org/10.6008/CBPC2179-6858.2018.005.0025

Mishra, S., Kumar, R., Kumar, M. (2023) Use of treated sewage or wastewater as an irrigation water for agricultural purposes- Environmental, health, and economic impacts. Total Environment Research Themes, 6(1), 100051. https://doi.org/10.1016/j.totert.2023.100051

Nazifa, T. H., Saady, N. M. C., Bazan, C., Zendehboudi, S., Aftab, A., Albayati, T. M. (2021) Anaerobic Digestion of Blood from Slaughtered Livestock: A Review. Energies, 14(1), 1-25. https://doi.org/10.3390/en14185666

Neri, A., Bernardi, B., Zimbalatti, G., Benalia, S. (2023) Na overview of anaerobic digestion of agricultural by-products and food waste foi biomethane production. Energies, 16(6851), 1-20. https://doi.org/10.3390/en16196851

Rahimiedh, A., Nosrati, M. (2024) A review on biochemistry, microbiology and thermodynamic aspects of propionate: The key intermediate in the anaerobic digestion and wastewater treatment. Desalination and Water Treatment, 317(1), 1-14. https://doi.org/10.1016/j.dwt.2024.100191

Rodrigues, M. R., Iemma, A. F. (2014) Experimental design and process optimization. 2a. ed. São Paulo: 2014.

Santos, D. de C. L. P., Correa, C. Alves, Y. A., Souza, C. G., Boloy, R. A. M. (2023) Brazil and the world market in the development of technologies for the production of second-generation ethanol. Alexandria Engineering Jounal, 67(1), 153-170. https://doi.org/10.1016/j.aej.2022.09.004

Siti, J. M. S., Nurrulhidayah, A. F., Azura, A., Mat, J. S. M., Abdul, R., Nur, A. T., Arieff, S. R., Rashidi, O. (2021) Issues related to animal blood into food products: a review paper. Food Research, 5(3), 12-21. https://doi.org/10.26656/fr.2017.5(3)512

Souto, L. R. F., Caliari, M., Soares Júnior, M. S., Fiorda, F. A., Garcia, M. C. (2016) Utilization of residue from cassava starch processing for production of fermentable sugar by enzymatic hydrolysis. Food Science and Technology, 37(1), 19-24. https://doi.org/10.1590/1678-457X.0023

Souza, L. D. P., Azerêdo, G. A., Silva, F. A. (2018) Comportamento do concreto sob altas temperaturas via planejamento experimental fatorial com configuração estrela. Ambiente Construído, 18(1), 327-344. https://doi.org/10.1590/s1678-86212018000100224

Zhang, Q., He, J., Tian, M., Mao, Z., Tang, L., Zhang, J., Zhang, H. (2011) Enhancement of methane production from cassava residues by biological pretreatment using a constructed microbial consortium. Bioresource Technology, 102(19), 8899-8906. https://doi.org/10.1016/j.biortech.2011.06.061