Unraveling the Secrets of Self-Assembly in the Machines of Life: Protein Folding and the 2024 Nobel Prize in Chemistry
Main Article Content
Abstract
In 2024, the Nobel Prize in Chemistry was awarded to Demis Hassabis, John M. Jumper, and David Baker for their contributions to computational protein folding prediction and design. Their advancements have enabled faster and more efficient study of the functions of these biological molecules, which perform the heavy lifting in living organisms. Composed of 20 different amino acids arranged in variable sequences, each protein folds into one or more structures based on its sequence, which determines its cellular function. Although the amino acid sequence encodes the final shape, the code has not been fully deciphered, and determining the structure requires experimental techniques that are labor-intensive, expensive, and not infallible. Genomics has revealed over 200 million natural amino acid sequences, yet Structural Biology has resolved only about 220,000 structures. Today, the gap has narrowed, thanks to the development of powerful Artificial Intelligence (AI) tools by the laureates. These breakthroughs have brought benefits to the advancement of Medicine, Pharmacology, Biotechnology, and other fields. In Mexico and the rest of Latin America, there are active researchers in the field, and the future looks promising.
Article Details
Citas en Dimensions Service
References
Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T., Pritzel, A., Ronneberger, O., Willmore, L., Ballard, A. J., Bambrick, J., Bodenstein, S. W., Evans, D. A., Hung, C., O’Neill, M., Reiman, D., Tunyasuvunakool, K., Wu, Z., Žemgulytė, A., Arvaniti, E., . . . Jumper, J. M. (2024). Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature, 630(8016), 493-500. https://doi.org/10.1038/s41586-024-07487-w
Aguirre-Sampieri, S., Casañal, A., Emsley, P., y Garza-Ramos, G. (2024). Cryo-EM structure of bacterial nitrilase reveals insight into oligomerization, substrate recognition, and catalysis. Journal of Structural Biology, 216(2), 108093. https://doi.org/10.1016/j.jsb.2024.108093
AlQuraishi, M. (2019). AlphaFold at CASP13. Bioinformatics, 35(22), 4862–4865. https://doi.org/10.1093/bioinformatics/btz422
Anfinsen, C. B. (1973). Principles that govern the folding of protein chains. Science, 181(96), 223–230. https://doi.org/10.1110/ps.8.6.1166
Baek, M., DiMaio, F., Anishchenko, I., Dauparas, J., Ovchinnikov, S., Lee, G. R., Wang, J., Cong, Q., Kinch, L. N., Schaeffer, R. D., Millán, C., Park, H., Adams, C., Glassman, C. R., DeGiovanni, A., Pereira, J. H., Rodrigues, A. V., Van Dijk, A. A., Ebrecht, A. C., . . . Baker, D. (2021). Accurate prediction of protein structures and interactions using a three-track neural network. Science, 373(6557), 871-876. https://doi.org/10.1126/science.abj8754
Dill, K. A. (1999). Polymer principles and protein folding. Protein Science, 8(6), 1166–1180. http://dx.doi.org/10.1110/ps.8.6.1166
DiMaio, F., Leaver-Fay, A., Bradley, P., Baker, D., y André, I. (2011). Modeling symmetric macromolecular structures in Rosetta3. PLoS One, 6(6), e20450. https://doi.org/10.1371/journal.pone.0020450
González-Andrade, M., Mata, R., Madariaga-Mazón, A., Rodríguez-Sotres, R., del Pozo-Yauner, L., y Sosa-Peinado, A. (2013). Importance of the interaction protein–protein of the CaM–PDE1A and CaM–MLCK complexes in the development of new anti-CaM drugs. Journal of Molecular Recognition, 26(4), 165–174. http://dx.doi.org/10.1002/jmr.2261
Guzmán-Ocampo, D. C., Aguayo-Ortiz, R., Velasco-Bolom, J.-L., Gupta, P. L., Roitberg, A. E., y Dominguez, L. (2023). Elucidating the protonation state of the γ-Secretase catalytic dyad. ACS Chemical Neuroscience, 14(2), 261–269. https://doi.org/10.1021/acschemneuro.2c00563
Hartl, F. U., y Hayer-Hartl, M. (2009). Converging concepts of protein folding in vitro and in vivo. Nature Structural & Molecular Biology, 16(6), 574–581. https://doi.org/10.1038/nsmb.1591
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera‐Paredes, B., Nikolov, S., Jain, R., Adler, J., . . . Hassabis, D. (2021). Applying and improving AlphaFold at CASP14. Proteins Structure Function And Bioinformatics, 89(12), 1711-1721. https://doi.org/10.1002/prot.26257
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., . . . Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583-589. https://doi.org/10.1038/s41586-021-03819-2
Krishna, R., Wang, J., Ahern, W., Sturmfels, P., Venkatesh, P., Kalvet, I., Lee, G. R., Morey-Burrows, F. S., Anishchenko, I., Humphreys, I. R., McHugh, R., Vafeados, D., Li, X., Sutherland, G. A., Hitchcock, A., Hunter, C. N., Kang, A., Brackenbrough, E., Bera, A. K., . . . Baker, D. (2024). Generalized biomolecular modeling and design with RoseTTAFold All-Atom. Science, 384(6693). https://doi.org/10.1126/science.adl2528
Kuhlman, B., Dantas, G., Ireton, G. C., Varani, G., Stoddard, B. L., y Baker, D. (2003). Design of a novel globular protein fold with atomic-level accuracy. Science, 302(5649), 1364–1368. http://dx.doi.org/10.1126/science.1089427
León-González, J. A., Flatet, P., Juárez-Ramírez, M. S., y Farías-Rico, J. A. (2022). Folding and evolution of a repeat protein on the ribosome. Frontiers in Molecular Biosciences, 9, 851038. https://doi.org/10.3389/fmolb.2022.851038
Martínez-Castilla, L. P., y Rodríguez-Sotres, R. (2010). A score of the ability of a three-dimensional protein model to retrieve its own sequence as a quantitative measure of its quality and appropriateness. PLoS One, 5(9), e12483. https://dx.doi.org/10.1371/journal.pone.0012483
Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., y Steinegger, M. (2022). ColabFold: Making protein folding accessible to all. Nature Methods, 19(6), 679-682. https://doi.org/10.1038/s41592-022-01488-1
Mittag, T., Kay, L. E., y Forman-Kay, J. D. (2010). Protein dynamics and conformational disorder in molecular recognition. Journal of Molecular Recognition, 23(2), 105-116. https://doi.org/10.1002/jmr.961
Ozden, B., Kryshtafovych, A., y Karaca, E. (2023). The impact of AI-based modeling on the accuracy of protein assembly prediction: Insights from CASP15. bioRxiv. https://doi.org/10.1101/2023.07.10.548341
Padilla-Mayne, S., Ovalle-Magallanes, B., Figueroa, M., Linares, E., Bye, R., Rivero-Cruz, I., González-Andrade, M., Aguayo-Ortiz, R., y Mata, R. (2024). Chemical analysis and antidiabetic potential of a decoction from Stevia serrataroots. Journal of Natural Products, 87(3), 501-513. https://doi.org/10.1021/acs.jnatprod.3c00711
Porta-Pardo, E., Ruiz-Serra, V., Valentini, S., y Valencia, A. (2022). The structural coverage of the human proteome before and after AlphaFold. PLoS Computational Biology, 18(1), e1009818. https://doi.org/10.1371/journal.pcbi.1009818
Rodríguez-Sotres, R. (2005). El descubrimiento de la ubiquitina y de su papel en la degradación de proteínas intracelulares. Educación Química, 16(1), 56-62.
Romero-Romero, S., Costas, M., Silva Manzano, D.-A., Kordes, S., Rojas-Ortega, E., Tapia, C., Guerra, Y., Shanmugaratnam, S., Rodríguez-Romero, A., Baker, D., Höcker, B., y Fernández-Velasco, D. A. (2021). The stability landscape of de novo TIM barrels explored by a modular design approach. Journal of Molecular Biology, 433(18), 167153. https://doi.org/10.1016/j.jmb.2021.167153
Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Hassabis, D., Graepel, T., Lillicrap, T., y Silver, D. (2020). Mastering Atari, Go, chess and shogi by planning with a learned model. Nature, 588(7839), 604-609. https://doi.org/10.1038/s41586-020-03051-4
Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., y Hassabis, D. (2018). A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science, 362(6419), 1140-1144. https://doi.org/10.1126/science.aar6404
Tunyasuvunakool, K., Adler, J., Wu, Z., Green, T., Zielinski, M., Žídek, A., Bridgland, A., Cowie, A., Meyer, C., Laydon, A., Velankar, S., Kleywegt, G. J., Bateman, A., Evans, R., Pritzel, A., Figurnov, M., Ronneberger, O., Bates, R., Kohl, S. A. A., ... y Hassabis, D. (2021). Highly accurate protein structure prediction for the human proteome. Nature, 596(7873), 590-596. https://doi.org/10.1038/s41586-021-03828-1
Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D., Stroe, O., Wood, G., Laydon, A., Žídek, A., Green, T., Tunyasuvunakool, K., Petersen, S., Jumper, J., Clancy, E., Green, R., Vora, A., Lutfi, M., ... y Velankar, S. (2022). AlphaFold protein structure database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Research, 50(D1), D439-D444. https://doi.org/10.1093/nar/gkab1061
Varadi, M., Bertoni, D., Magana, P., Paramval, U., Pidruchna, I., Radhakrishnan, M., Tsenkov, M., Nair, S., Mirdita, M., Yeo, J., Kovalevskiy, O., Tunyasuvunakool, K., Laydon, A., Žídek, A., Tomlinson, H., Hariharan, D., Abrahamson, J., Green, T., Jumper, J., ... y Velankar, S. (2023). AlphaFold protein structure database in 2024: Providing structure coverage for over 214 million protein sequences. Nucleic Acids Research, 52(D1), D368-D375. https://doi.org/10.1093/nar/gkad1011

Educación Química por Universidad Nacional Autónoma de México se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.
Basada en una obra en http://www.revistas.unam.mx/index.php/req.