Revisiting Spontaneity: Addressing Student Misconceptions in Basic Chemistry Courses

Main Article Content

Julio José Andrade-Gamboa
Edgardo R. Donati

Abstract

This paper analyzes common misconceptions among introductory chemistry students about the spontaneity of thermodynamic processes. It argues that these errors stem less from mathematical difficulty than from misunderstandings about the conditions under which thermodynamic criteria apply. The discussion focuses on the frequent misuse of Gibbs free energy change (ΔG), particularly when it is applied outside conditions of constant temperature and pressure or to processes involving work other than pressure–volume work. Through examples such as ideal gas expansions, the paper clarifies that ΔG is both a criterion for spontaneity and a measure of maximum useful work in reversible processes. It also explains that non-spontaneous processes can occur when driven by external inputs. Finally, it highlights the value of three-dimensional P–V–T representations and emphasizes that spontaneity depends on both enthalpic and entropic contributions, underscoring the importance of precise definitions in thermodynamics.

Article Details

Citas en Dimensions Service

References

Andrade-Gamboa, J. (2023). ¿Qué peste la del estaño? Tres desastrosos momentos en la historia. Los Andes. https://www.losandes.com.ar/sociedad/que-peste-la-del-estano-tres-desastrosos-momentos-en-la-historia

Andrade Gamboa, J., Donati, E. R., & Mártire, D. O. (2001). An analogy for teaching the difference between heat and temperature. Chem 13 News, (297), 8–11.

Barrow, G. M. (1978). Química física (Tomo I). Reverté.

Ben-Naim, A. (2011). Entropy: Order or information. Journal of Chemical Education, 88(5), 594–596. https://doi.org/10.1021/ed100922x DOI: https://doi.org/10.1021/ed100922x

Biel Gayé, J. (1998). Curso sobre el formalismo y los métodos de la termodinámica (Vol. 1). Reverté.

Brundage, M. J., Meltzer, D. E., & Singh, C. (2024a). Investigating introductory and advanced students’ difficulties with change in internal energy, work, and heat transfer using a validated instrument. Physical Review Physics Education Research, 20, 010115. https://doi.org/10.1103/PhysRevPhysEducRes.20.010115 DOI: https://doi.org/10.1103/PhysRevPhysEducRes.20.029902

Brundage, M. J., Meltzer, D. E., & Singh, C. (2024b). Investigating introductory and advanced students’ difficulties with entropy and the second law of thermodynamics using a validated instrument. Physical Review Physics Education Research, 20, 020110. https://doi.org/10.1103/PhysRevPhysEducRes.20.020110 DOI: https://doi.org/10.1103/PhysRevPhysEducRes.20.020110

Carson, E. M., & Watson, J. R. (1999). Undergraduate students’ understanding of enthalpy change. University Chemistry Education, 3(2), 46–51. https://edu.rsc.org/download?ac=517085

Committee on Undergraduate Science Education, & National Research Council. (1997). Science teaching reconsidered: A handbook. National Academy Press.

de Rosnay, J. (1993). Qué es la vida. Biblioteca Científica Salvat.

DeVoe, H. (2020). Thermodynamics and chemistry. https://www2.chem.umd.edu/thermobook/

Donati, E. R., Andrade Gamboa, J., & Mártire, D. O. (1995). Misconceptions induced by chemistry teachers. Chem 13 News, (241), 20–21.

Gislason, E. A., & Craig, N. C. (2013). Criteria for spontaneous processes derived from the global point of view. Journal of Chemical Education, 90(5), 584–590. https://doi.org/10.1021/ed300570u DOI: https://doi.org/10.1021/ed300570u

Granville, M. F. (1985). Student misconceptions in thermodynamics. Journal of Chemical Education, 62(10), 847–848. https://doi.org/10.1021/ed062p847 DOI: https://doi.org/10.1021/ed062p847

Lambert, F. L. (2012). The misinterpretation of entropy as “disorder”. Journal of Chemical Education, 89(3), 310. https://doi.org/10.1021/ed2002708 DOI: https://doi.org/10.1021/ed2002708

Lladó, M. L., & Jubert, A. H. (2011). Trabajo útil y su relación con la variación de energía de Gibbs. Educación Química, 22(3), 271–276. https://doi.org/10.1016/S0187-893X(18)30144-7 DOI: https://doi.org/10.1016/S0187-893X(18)30144-7

Metiu, H. (2006). Physical chemistry: Thermodynamics. Taylor & Francis. DOI: https://doi.org/10.1201/9780429258923

Salame, I. I., Fadipe, O., & Akter, S. (2025). Examining difficulties, challenges, and alternative conceptions students exhibit while learning about heat and temperature concepts. Interdisciplinary Journal of Environmental and Science Education, 21(2), e2510. https://doi.org/10.29333/ijese/15997 DOI: https://doi.org/10.29333/ijese/15997

Schrödinger, E. (1986). ¿Qué es la vida? El aspecto físico de la célula viva. Ediciones Orbis.

Van Roon, P. H., Van Sprang, H. F., & Verdonk, A. H. (1994). “Work” and “heat”: On a road towards thermodynamics. International Journal of Science Education, 16(2), 131–144. https://doi.org/10.1080/0950069940160203 DOI: https://doi.org/10.1080/0950069940160203

Vasini, E., & Donati, E. R. (2005). Thermodynamics concepts: Some considerations on the use in introductory courses of chemistry. Journal of the Argentine Chemical Society, 93(1–3), 177–184.

Vasini, E. J., & Donati, E. R. (2001). Uso de analogías adecuadas como recurso didáctico para la comprensión de los fenómenos electroquímicos en el nivel universitario inicial. Enseñanza de las Ciencias, 19(3), 471–477. https://doi.org/10.5565/rev/ensciencias.3995 DOI: https://doi.org/10.5565/rev/ensciencias.3995