Alkaline activation of industrial waste. An alternative for its reuse in construction

Main Article Content

Tania Ariadna García Mejía
Rosa María Ramírez Zamora

Abstract

Every year, a signiftcant amount of recyclable glass is disposed of in landftlls worldwide, thus posing an environmental problem due to accumulation over extended periods of time. This is why, in this paper, the influence of glass residues on the compressive strength of materials obtained through alkaline activation, using hydroxide and sodium silicate, on a mixture of iron slag and fly ash, was studied. The replacement of 70, 20 and 30% of the fly ash, by glass waste, increased its compressive strength by up to 79.3% after 7 days; 77.8% after 74 days, and 75.9% after 35 days, compared to the reference mixture of 50% iron slag and 50% fly ash. The results indicated that it is possible to use glass residues as a partial precursor of fly ash in these materials.

Downloads

Download data is not yet available.

Article Details

How to Cite
García Mejía, T. A., & Ramírez Zamora, R. M. (2023). Alkaline activation of industrial waste. An alternative for its reuse in construction. Academia XXII, 14(27), 222–241. https://doi.org/10.22201/fa.2007252Xp.2023.27.85764
Author Biographies

Tania Ariadna García Mejía, Instituto de Ingeniería, Coordinación de Ingeniería Ambiental

Es investigadora asociada C en el Instituto de Ingeniería y profesora de asignatura en la Facultad de Química, UNAM. Es química, maestra (mención honorífica) y doctora en Ciencia e Ingeniería de Materiales por la UNAM. Realizó estancias posdoctorales en el Instituto de Ingeniería y en el Instituto de Física, UNAM. Su línea de investigación se centra en la valorización de residuos para aplicaciones ambientales y en ingeniería civil.

Rosa María Ramírez Zamora, Instituto de Ingeniería, Coordinación de Ingeniería Ambiental

Es investigadora defnitiva Titular B en el nstituto de ngeniería, UNAM. Es ingeniera química por la UNAM, maestra en ingeniería sanitaria y doctora en ciencias químicas (especialidad en tratamiento de aguas) por la Université de Rennes 1 Bretagne, Francia. Pertenece al Sistema Nacional de nvestigadores, SNI-CONACYT, nivel II. Entre sus líneas de investigación se encuentra la valoración de residuos industriales para tratamiento de agua y aire. Ha recibido diversos premios y reconocimientos, entre los que se encuentran: Premio León Bialik (2011), Premio a la nnovación Cemex (2014), Premio León y Pola Bialik a la innovación Tecnológica (2016).

References

AGHDAM, K. A., A. F. RAD, H. SHAKERI Y J. M. SARDROUD, 2018, “Approaching green buildings using eco-efficient construction materials: A review of the state-of-the-art”, J. Constr. Eng. Proj. Manag., 8, pp. 1-23, https://doi.org/10.6106/JCEPM.2018.8.3.001.

ALMALKAWI, A. T., A. BALCHANDRA, Y P. SOROUSHIAN, 2019, “Potential of Using Industrial Wastes for Production of Geopolymer Binder as Green Construction Materials”, Construction and Building Materials, 220, pp. 516-524, https://doi.org/10.1016/j.conbuildmat.2019.06.054.

AMERICAN COAL-ASH ASSOCIATION (ACAA), 2021, “2021 Coal Combustion Product (CCP) Production & Use Survey Report”, https://acaa-usa.org/wp-content/uploads/2022/12/2021-Production-and-Use-Survey-Results-FINAL.pdf, consultado 23 de febrero de 2023.

AMERICAN CONCRETE INSTITUTE, 2013, Concrete Terminology, An ACI standard, https://www.concrete.org/portals/0/files/pdf/aci_concrete_terminology.pdf, consultado el 28 de febrero de 2023.

AMERICAN SOCIETY FOR TESTING AND MATERIALS, “Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete”, ASTM C 618-03. https://civiledu.co/2021/09/08/astm-c-618-03-pdf-free-download/

BERNAL, S. A., Y J. L. PROVIS, 2014, “Durability of Alkali-Activated Materials: Progress and Perspectives”, Journal of the American Ceramic Society, 97 (4), pp. 997-1008, https://doi.org/10.1111/jace.12831.

BHATTY, J. I., L. A. GRAF, F. M. MILLER Y J. GAJDA, La ceniza volante con alto contenido de carbón y de cemento, https://www.imcyc.com/cyt/septiembre03/ceniza.htm, consultado el 28 de febrero de 2023.

CHÁVEZ VELÁSQUEZ, C. A. E Y. L. GUERRA MAESTRE, 2015, Producción, propiedades y uso de los residuos de la combustión del carbón de termotasajero, tesis de licenciatura en ingeniería civil, Universidad Santo Tomás, Bogotá, 2015, p. 130, https://repository.usta.edu.co/bitstream/handle/11634/9685/ChavezCamilo2015.pdf?sequence=1, consultado el 28 de febrero de 2023.

COMISIÓN FEDERAL DE ELECTRICIDAD, 1996, Integración de estudios de selección de sitios para disposición de cenizas, https://lapem.cfe.gob.mx/normas/pdfs/n/10000-19.pdf, consultado el 28 de febrero de 2023.

COMISIÓN FEDERAL DE ELECTRICIDAD, 2022, Informe Anual 2021, https://infosen.senado.gob.mx/sgsp/gaceta/65/1/2022-05-11-1/assets/documentos/CFE_Informe_Anual_2021.pdf, consultado el 27 de febrero de 2023.

FERNÁNDEZ-JIMÉNEZ, A., Y A. PALOMO, 2003, “Characterisation of fly ashes. Potential reactivity as alkaline cements”, Fuel, 82 (18), 2259-2265, doi:10.1016/s0016-2361(03)00194-7.

GÖKÇE H. S., M. TUYAN Y M. L. NEHDI, 2021, “Alkali-activated and geopolymer materials developed using innovative manufacturing techniques: A critical review”, Construction and Building Materials, 303, 124483, https://doi.org/10.1016/j.conbuildmat.2021.124483.

LIANG, G., H. LI, H. ZHU, T. LIU, Q. CHEN Y H. GUO, 2021, “Reuse of waste glass powder in alkali-activated metakaolin/fly ash pastes: Physical properties, reaction kinetics and microstructure”, Resources, Conservation and Recycling, 173, 105721, https://doi.org/10.1016/j.resconrec.2021.105721.

LING, T.-C., C.-S. POON Y H.-W. WONG, 2013, “Management and recycling of waste glass in concrete products: Current situations in Hong Kong”, Resources, Conservation and Recycling, 70, 25-31, doi:10.1016/j.resconrec.2012.10.006

LIU, Y., C. SHI, Z. ZHANG Y N. LI, 2019, “An overview on the reuse of waste glasses in alkali-activated materials”, Resources, Conservation and Recycling, 144, pp. 297-309, https://doi.org/10.1016/j.resconrec.2019.02.007.

LUHAR, S., T.-W. CHENG, D. NICOLAIDES, I. LUHAR, D. PANIAS Y K. SAKKA, 2019, “Valorisation of glass wastes for the development of geopolymer composites – Durability, thermal and microstructural properties: A review”, Construction and Building Materials, 222, pp. 673-687, doi:10.1016/j.conbuildmat.2019.06.169.

MANIKANDAN P., Y V. VASUG, 2022, “Potential utilization of waste glass powder as a precursor material in synthesizing ecofriendly ternary blended geopolymer matrix”, Journal of Cleaner Production, vol. 355, 131860, https://doi.org/10.1016/j.jclepro.2022.131860.

NORMA N·CMT·2·02·001/02, “Calidad del cemento Porltand”, https://normas.imt.mx/normativa/N-CMT-2-02-001-02.pdf, consultado el 11 de febrero de 2023.

O’CONNOR, J., ET AL., 2021, “Production, characterisation, utilisation, and beneficial soil application of steel slag: A review”, Journal of Hazardous Materials, vol. 419, 126478, https://doi.org/10.1016/j.jhazmat.2021.126478.

PIATAK, N. M., M. B. PARSONS Y R. R. SEAL, 2015, “Characteristics and environmental aspects of slag: A review”, Applied Geochemistry, vol. 57, pp. 236-266, https://doi.org/10.1016/j.apgeochem.2014.04.009.

PRADHAN, P., S. DWIBEDY, M. PRADHAN, S. PANDA Y S. K. PANIGRAHI, 2022, “Durability characteristics of geopolymer concrete – Progress and perspectives, Journal of Building Engineering”, vol. 59, 105100, https://doi.org/10.1016/j.jobe.2022.105100.

PROVIS, J. L., 2018, “Alkali-activated materials”, Cement and Concrete Research, vol. 114, pp. 40-48, doi:10.1016/j.cemconres.2017.02.009.

RENDÓN BELMONT M., D. SÁNCHEZ TOPETE, M. MARTÍNEZ MADRID Y A. LÓPEZ MIGUEL, 2021, Caracterización fisicoquímica de concretos con contenidos del 30% de ceniza volante, Instituto Mexicano del Transporte, Publicación Técnica núm. 618, pp. 3-4, https://imt.mx/archivos/Publicaciones/PublicacionTecnica/pt618.pdf.

SECRETARÍA DEL MEDIO AMBIENTE Y RECURSOS NATURALES, 2012, Reporte de reciclaje de residuos sólidos urbanos para el año 2012, https://datos.gob.mx/busca/dataset/

indicadores-de-crecimiento-verde--producción-y-consumo, consultado el 27 de febrero de 2023.

SECRETARÍA DEL MEDIO AMBIENTE Y RECURSOS NATURALES, 2015, Informe de la Situación del Medio Ambiente en México, “Residuos” (cap. 7), 2015, https://apps1.semarnat.gob.mx:8443/dgeia/informe15/tema/pdf/Informe15_completo.pdf, consultado el 27 de febrero de 2023.

TEMNIKOV, V. V., ET AL., 2020, “Ladle-Furnace-Slag Reprocessing at Evraz Nizhnii Tagil Iron and Steel Works OJSC”, Metallurgist, 64, pp. 508-513, https://doi.org/10.1007/s11015-020-01020-w.

TORRES CARRASCO, M., C. RODRÍGUEZ-PUERTAS, M. DEL M. ALONSO Y F. PUERTAS, 2015, “Alkali activated slag cements using waste glass as alternative activators. Rheological behaviour”, Boletín de La Sociedad Española de Cerámica y Vidrio, vol. 54, núm. 2, pp. 45-57, doi:10.1016/j.bsecv.2015.03.004.

TORRES CARRASCO, M., Y F. PUERTAS, 2017, “La activación alcalina de diferentes aluminosilicatos como una alternativa al Cemento Portland: cementos activados alcalinamente o geopolímeros”, Revista Ingeniería de Construcción, vol. 32, núm. 2, pp. 5-12, https://dx.doi.org/10.4067/S0718-50732017000200001.

UNITED STATES GEOLOGICAL SURVEY (2023), “Iron and Steel Slag”, Statistics and Information for the year 2023, https://pubs.usgs.gov/periodicals/mcs2023/mcs2023-iron-steel-slag.pdf, consultado el 28 de febrero de 2023.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY, Advancing Sustainable Materials Management, “Fact Sheet”, 2018, https://www.epa.gov/sites/default/files/2020-11/documents/2018_ff_fact_sheet.pdf, consultado el 27 de febrero de 2023.

ZHANG, T., P. GAO, P. GAO, J. WEI Y Q. YU, 2013, Effectiveness of novel and traditional methods to incorporate industrial wastes in cementitious materials—An overview. Resources, Conservation and Recycling, vol. 74, pp. 134-143, doi: 10.1016/j.resconrec.2013.03.003.

ZHAO, J., ET AL., 2021, “Eco-friendly geopolymer materials: A review of performance improvement, potential application and sustainability assessment”, Journal of Cleaner Production, 307, 127085, https://doi.org/10.1016/j.jclepro.2021.127085.