Aprender química es también aprender a autorregularse: cómo mejorar la comprensión de lo que se hace y cómo se hace en el laboratorio
Contenido principal del artículo
Resumen
Este artículo presenta una experiencia enfocada en el aprendizaje autorregulado del estudiantado universitario en un laboratorio de química general. El objetivo fue reducir la brecha entre los conceptos teóricos tratados en clase y las actividades experimentales realizadas en el laboratorio mediante el uso de un instrumento denominado “base de orientación”. Los datos se analizaron con un enfoque cualitativo, identificándose tres categorías emergentes: representación, anticipación y planificación de la acción. Los resultados muestran que el instrumento favorece la construcción de andamiajes que apoyan la regulación de procedimientos y permiten establecer de forma precisa la relación teoría-práctica en condiciones específicas. Finalmente, se discuten las implicaciones de estos hallazgos para fortalecer los vínculos entre teoría y práctica, así como para impulsar procesos efectivos de autorregulación en contextos educativos experimentales.
Detalles del artículo
Citas en Dimensions Service
Citas
Abarro, R. Q., y Asuncion, J. E. (2021). Metacognition in chemistry education. Theoretical & Applied Science, 95(03), 1–22. https://doi.org/10.15863/TAS.2021.03.95.1 DOI: https://doi.org/10.15863/TAS.2021.03.95.1
Agustian, H. Y. (2020). Students’ understanding of the nature of science in the context of an undergraduate chemistry laboratory. The Electronic Journal for Research in Science & Mathematics Education, 24(2), 56–85.
Areepattamannil, S., Cairns, D., y Dickson, M. (2020). Teacher-directed versus inquiry-based science instruction: Investigating links to adolescent students’ science dispositions across 66 countries. Journal of Science Teacher Education, 31(6), 675–704. https://doi.org/10.1080/1046560X.2020.1753309 DOI: https://doi.org/10.1080/1046560X.2020.1753309
Bliss, J., Monk, M., y Ogborn, J. (1983). Qualitative data analysis for education research: A guide to uses of systemic networks. Croom Helm.
Bossér, U., y Lindahl, M. (2019). Students’ positioning in the classroom: A study of teacher-student interactions in a socioscientific issue context. Research in Science Education, 49(2), 371–390. https://doi.org/10.1007/s11165-017-9627-1 DOI: https://doi.org/10.1007/s11165-017-9627-1
Bossér, U., Lundin, M., Lindahl, M., y Linder, C. (2021). Challenges faced by teachers implementing socio-scientific issues as core elements in their classroom practices. European Journal of Science and Mathematics Education, 3(2), 159–176. https://doi.org/10.30935/scimath/9429 DOI: https://doi.org/10.30935/scimath/9429
Calabrese Barton, A., y Yang, K. (2000). The culture of power and science education: Learning from Miguel, just one of many. Journal of Research in Science Teaching, 37(8), 871–889. John Wiley & Sons, Inc. DOI: https://doi.org/10.1002/1098-2736(200010)37:8<871::AID-TEA7>3.3.CO;2-0
Dinçol Özgür, S. (2024). The effects of prospective chemistry teachers’ laboratory teaching experiences on their metacognitive thinking skills and perceptions of problem-solving skills. European Journal of Psychology of Education, 39(3), 2057–2082. https://doi.org/10.1007/s10212-023-00760-y DOI: https://doi.org/10.1007/s10212-023-00760-y
Flick, U., Amo, T., y Blanco, C. (2015). El diseño de investigación cualitativa. Morata.
García, P., y Sanmartí, N. (1998). Las bases de orientación: Un instrumento para enseñar a pensar teóricamente en biología. Alambique: Didáctica de las Ciencias Experimentales, 16, 8–20.
Gericke, N., Högström, P., y Wallin, J. (2023). A systematic review of research on laboratory work in secondary school. Studies in Science Education, 59(2), 245–285. https://doi.org/10.1080/03057267.2022.2090125 DOI: https://doi.org/10.1080/03057267.2022.2090125
Hamel, C., y Viau-Guay, A. (2019). Using video to support teachers’ reflective practice: A literature review. Cogent Education, 6(1), 1673689. https://doi.org/10.1080/2331186X.2019.1673689 DOI: https://doi.org/10.1080/2331186X.2019.1673689
Hernández, V. M., Bonilla, P. J. S., y Alonso, J. J. S. (2021). Feedback and self-regulated learning in higher education. Revista de Investigación Educativa, 39(1), 227–248. https://doi.org/10.6018/RIE.423341 DOI: https://doi.org/10.6018/rie.423341
Hofstein, A., y Mamlok-Naaman, R. (2007). The laboratory in science education: The state of the art. Chemistry Education Research and Practice, 8(2), 105–107. https://doi.org/10.1039/B7RP90003A DOI: https://doi.org/10.1039/B7RP90003A
Idoyaga, I. J. (2023). El laboratorio extendido: Nuevas perspectivas para el diseño de la enseñanza de las ciencias naturales en contextos digitales. Revista Innovaciones Educativas, 25(SPE1), 45–59. https://doi.org/10.22458/IE.V25IESPECIAL.5083 DOI: https://doi.org/10.22458/ie.v25iEspecial.5083
Jorba, J., y Sanmartí, N. (1996). Enseñar, aprender y evaluar: Un proceso de regulación continua: Propuestas didácticas para las áreas de ciencias de la naturaleza y matemáticas. Ministerio de Educación, Cultura y Deporte.
Kennepohl, D. (2021). Laboratory activities to support online chemistry courses: A literature review. Canadian Journal of Chemistry, 99(11), 851–859. https://doi.org/10.1139/cjc-2020-0506 DOI: https://doi.org/10.1139/cjc-2020-0506
Lavi, R., Shwartz, G., y Dori, Y. J. (2019). Metacognition in chemistry education: A literature review. Israel Journal of Chemistry, 59(6), 583–597. https://doi.org/10.1002/ijch.201800087 DOI: https://doi.org/10.1002/ijch.201800087
Nunziati, G. (1990). Pour construire un dispositif d’évaluation formatrice. Cahiers Pédagogiques, 280, 47–64.
Pajares, M. F. (1992). Teachers’ beliefs and educational research: Cleaning up a messy construct. Review of Educational Research, 62(3), 307–332. https://doi.org/10.3102/00346543062003307 DOI: https://doi.org/10.3102/00346543062003307
Pérez, G. M., y González Galli, L. (2020). Actividades para fomentar la metacognición en las clases de biología. Tecné Episteme y Didaxis: TED, 47. https://doi.org/10.17227/ted.num47-7970 DOI: https://doi.org/10.17227/ted.num47-7970
Puustinen, M., y Pulkkinen, L. (2001). Models of self-regulated learning: A review. Scandinavian Journal of Educational Research, 45(3), 269–286. https://doi.org/10.1080/00313830120074206 DOI: https://doi.org/10.1080/00313830120074206
Quintanilla, M., y Adúriz-Bravo, A. (2022). Enseñanza de las ciencias para una nueva cultura docente: Desafíos y oportunidades. Ediciones UC.
Quiroz, B. (2016). Convenciones de notación sistémica. Onomázein, 33(33), 412–426. https://doi.org/10.7764/ONOMAZEIN.33.24 DOI: https://doi.org/10.7764/onomazein.33.24
Quiroz, N., Carrión, E. I., Mera, V., Asqui, O., Lema, B., y Berrones, P. (2023). Estrategias cognitivas, metacognitivas y afectivas para el aprendizaje autorregulado. Perspectivas, 8(6), 995–1017. https://doi.org/10.23857/pc.v8i6 DOI: https://doi.org/10.23857/pc.v8i6
Rickey, D., y Stacy, A. M. (2000). The role of metacognition in learning chemistry. Journal of Chemical Education, 77(7), 915–920. DOI: https://doi.org/10.1021/ed077p915
Sanmartí, N. (2020). Avaluar és aprendre: L’avaluació per millorar els aprenentatges de l’alumnat en el marc del currículum per competències. Departament d’Educació.
Sanmartí, N., y Jorba, J. (1993). Strategies promoting self-regulation in science learning. In Proceedings of the Third International Seminar on Misconceptions and Educational Strategies in Science and Mathematics. Cornell University, Ithaca.
Sarramona, J. (2022). La investigación en ciencias sociales: Posibilidades y limitaciones. Horsori.
Schraw, G., Crippen, K. J., y Hartley, K. (2006). Promoting self-regulation in science education: Metacognition as part of a broader perspective on learning. Research in Science Education, 36(1–2), 111–139. https://doi.org/10.1007/s11165-005-3917-8 DOI: https://doi.org/10.1007/s11165-005-3917-8
Starck, J. G., Riddle, T., Sinclair, S., y Warikoo, N. (2020). Teachers are people too: Examining the racial bias of teachers compared to other American adults. Educational Researcher, 49(4), 273–284. https://doi.org/10.3102/0013189X20912758 DOI: https://doi.org/10.3102/0013189X20912758
Thapaliya, P., y Luitel, B. C. (2024). Reflection-on-/in-/for-actions: Deconstructing hegemonic pedagogical culture in science education. Cultural Studies of Science Education, 19(1), 64–76. https://doi.org/10.1177/20966083241241351 DOI: https://doi.org/10.1177/20966083241241351
Thornhill-Miller, B., Camarda, A., Mercier, M., Burkhardt, J. M., Morisseau, T., Bourgeois-Bougrine, S., Vinchon, F., el Hayek, S., Augereau-Landais, M., Mourey, F., Feybesse, C., Sundquist, D., y Lubart, T. (2023). Creativity, critical thinking, communication, and collaboration: Assessment, certification, and promotion of 21st century skills for the future of work and education. Journal of Intelligence, 11(3), 54. https://doi.org/10.3390/jintelligence11030054 DOI: https://doi.org/10.3390/jintelligence11030054
Tobin, K. (1990). Research on science laboratory activities: In pursuit of better questions and answers to improve learning. School Science and Mathematics, 90(5), 403–418. DOI: https://doi.org/10.1111/j.1949-8594.1990.tb17229.x
Torregrosa, A. (2020). La base de orientación no lineal: Estudio de tres grupos clase ante un mismo ciclo de resolución de problemas de patrones. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 17(3), 3101.
Torres, N. Y., Correa, T. H. B., y Matarredona, J. A. S. (2022). Explanatory causal relationships in science education and its contribution to critical thinking. Investigações em Ensino de Ciências, 27(3), 239–253. https://doi.org/10.22600/1518-8795.ienci2022v27n3p239 DOI: https://doi.org/10.22600/1518-8795.ienci2022v27n3p239
Ucar, S. (2012). How do pre-service science teachers’ views on science, scientists, and science teaching change over time in a science teacher training program? Journal of Science Education and Technology, 21(2), 255–266. https://doi.org/10.1007/s10956-011-9311-6 DOI: https://doi.org/10.1007/s10956-011-9311-6
Vears, D. F., y Gillam, L. (2022). Inductive content analysis: A guide for beginning qualitative researchers. Qualitative Research Journal, 23(1), 84–99. https://doi.org/10.3316/informit.455663644555599 DOI: https://doi.org/10.11157/fohpe.v23i1.544
Wang, M., y Zheng, X. (2021). Using game-based learning to support learning science: A study with middle school students. Asia-Pacific Education Researcher, 30(2), 167–176. https://doi.org/10.1007/s40299-020-00523-z DOI: https://doi.org/10.1007/s40299-020-00523-z

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Educación Química por Universidad Nacional Autónoma de México se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.
Basada en una obra en http://www.revistas.unam.mx/index.php/req.