Biocompuesto de hojas secas de mango y resina poliéster
Contenido principal del artículo
Resumen
Esta investigación se enfoca en el desarrollo de un compuesto termoestable para la manufactura de una placa que puede ser utilizada en las edificaciones como recubrimiento de paredes o como cielo raso. El trabajo consiste en el reciclaje de las hojas secas de mango como residuo de las cosechas o poda, para utilizarlo como material de refuerzo en una matriz de resina poliéster. Se caracterizaron cinco modelos para determinar su comportamiento físico y mecánico de acuerdo con la norma ecuatoriana INEN 3110 sobre tableros de partículas. Los resultados obtenidos demuestran el potencial de las hojas de mango para ser utilizadas como fibra de refuerzo en biocompuestos. El desarrollo de este material contribuye a mitigar la mala gestión de residuos agrícolas y disminuir el empleo de fibras sintéticas.
Descargas
Detalles del artículo
Citas en Dimensions Service
Citas
Adhika, Damar Rastri, et al., 2020, “Sound absorption characteristics of pineapple leaf/epoxy composite”, Archives of Acoustics, vol. 45, núm. 2, doi: 10.24425/AOA.2020.133144.
Betelie, Araya Abera, et al., 2019, “Mechanical properties of sisal-epoxy composites as functions of fiber-to-epoxy ratio”, AIMS Materials Science, vol. 6, núm. 6, doi:10.3934/MATERSCI.2019.6.985.
Butron Janices, Amaia e Issa Katime, 2014, “Propiedades Físicas y Mecánicas de Sistemas Bicomponentes”, Rev. Iber. de Polímeros, vol. 15, núm. 6, 2014.
Cetmar, 2021, “Manual del curso: Modelador laminador de poliéster reforzado”, Centro Tecnológico del Mar, https://cetmar.org/biblioteca-2/manual-modelador-laminador-de-poliesterreforzado/?lang=es&seq_no=2.
De, Bibekananda, et al., 2024, “A comprehensive review on fiber-reinforced polymer composites: Raw materials to applications, recycling, and waste management”, Progress in Materials Science, vol. 146, 101326, doi: 10.1016/J.PMATSCI.2024.101326.
Echeverría-Maggi, Eddie, Vicente Flores-Alés y Juan Jesús Martín-Del-Río, 2022, “Reuse of banana fiber and peanut shells for the design of new prefabricated products for buildings”, Revista de la Construcción, vol. 21, núm.2, Santiago, Chile, doi: 10.7764/RDLC.21.2.461.
Echeverría-Maggi, Eddie, et al., 2024, “Louver of coconut fiber and sawdust bonded with epoxy resin”, Lecture Notes in Networks and Systems, en J.P. Salgado-Guerrero, et al. (eds.) Systems, Smart Technologies and Innovation for Society, citis, Lecture Notes in Networks and Systems, vol 871. Springer, Cham., doi: 10.1007/978-3-031-52090-7_19.
Elchalakani, Mohamed, et al., 2023, “Mechanical properties of fiber reinforced polymer (frp) and steel bars.” Geopolymer Concrete Structures with Steel and frp Reinforcements, doi: 10.1016/B978-0-443-18876-3.00002-5.
Ellen MacArthur Foundation, 2025, “How to Build a Circular Economy”, https://www.ellenmacarthurfoundation.org/.
Farag, Eman, et al., 2020, “Production of particleboard using olive stone waste for interior design”, Journal of Building Engineering, vol. 29, 101119, doi: 10.1016/J.JOBE.2019.101119.
Ferrández-García, Antonio, et al., 2021, “Analysis of the Manufacturing Variables of Binderless Panels Made of Leaves of Olive Tree (Olea Europaea L.) Pruning Waste”, Agronomy, vol. 12, núm. 1, doi:10.3390/AGRONOMY12010093.
García-Mahecha, Maribel, et al., 2023, “Production and characterization of cellulosic pulp from mango agro-industrial waste and potential applications”, Polymers, vol. 15, núm. 15, doi:10.3390/POLYM15153163/S1.
Gonçalves, F. A. M. M., et al., 2017, “The potential of unsaturated polyesters in biomedicine and tissue engineering: Synthesis, structure-properties relationships and additive manufacturing”, Progress in Polymer Science, vol. 68, doi: 10.1016/J.PROGPOLYMSCI.2016.12.008.
Guna, Vijaykumar, et al., 2020, “Groundnut shell / rice husk agro-waste reinforced polypropylene hybrid biocomposites”, Journal of Building Engineering, vol. 27, 100991, doi: 10.1016/J.JOBE.2019.100991.
INEC, 2023, Estadísticas Agropecuarias, https://www.ecuadorencifras.gob.ec/estadisticas-agropecuarias-2/.
Kanhaya Lal, Raushan Kumar y Sunanda Das, 2023, “Hydration studies of mango leaf ash blended with ordinary portland cement”, A Journal for New Zealand Herpetology, vol. 12, núm. 2, doi:http://biogecko.co.nz/.2023.v12.i02.pp522-533.
Khan, Fazal Maula, et al., 2022, “A Comprehensive Review on Epoxy Biocomposites Based on Natural Fibers and Bio-fillers: Challenges, Recent Developments and Applications”, Advanced Fiber Materials, vol. 4, núm. 4, doi: 10.1007/S42765-022-00143-W.
Kumar, Sanjeev, et al., 2021, “Physical and mechanical properties of natural leaf fiber-reinforced epoxy polyester composites”, Polymers, vol. 13, doi: 10.3390/POLYM13091369.
Liuzzi, Stefania, et al., 2020, “Characterization of biomass-based materials for building applications: the case of straw and olive tree waste”, Industrial Crops and Products, vol. 147, 112229, doi: 10.1016/J.INDCROP.2020.112229.
Omotayo, O. E., et al., 2022, “Phytochemical and antibacterial activity of Mangifera indica Linn (Mango) bark and leaf extracts on bacteria isolated from domestic wastewater samples”, African Journal of Clinical and Experimental Microbiology, vol. 23, núm. 1, doi:10.4314/AJCEM.V23I1.10.
ONU, 2023, “Materiales de construcción y el clima: Construyendo un nuevo futuro | UNEP - un Environment Programme”, 2023, consultado el 24 junio, 2024, https://www.unep.org/es/resources/informe/materiales-de-construccion-y-elclima-construyendo-un-nuevo-futuro.
Parente Gonçalves, Angelucia, et al., 2023, “Polymers and mango (Mangifera indica L.): A systematic literature review on potential value and application”, Journal of food measurement and characterization, vol. 18, núm. 1, doi:10.1007/S11694-023-02128-8.
Qi, 2023, “Las hojas secas de los árboles, ¡no son basura!” - Qi Argentina, https://qiarg.org/2023/05/13/las-hojas-secas-de-losarboles-no-son-basura/, consultado el 24 junio de 2024.
Rajamanikandan, T., S. Banumathi y R. Asokan, 2021, “Performance Analysis of Electrical Properties of Resin Transfer Molded Banana Leaf Reinforced Polymer Composites”, Journal of University of Shanghai for Science and Technology, vol. 23, núm. 10, doi: 10.51201/JUSST/21/10736.
Satoto, Rahmat, et al., 2022, “Plastic Composites Using Mango Leaf Waste for Cost Effectiveness and Green Environment”, Jurnal Kimia Valensi, vol. 8, núm. 1, doi:10.15408/JKV.V8I1.24557.
Seid, Abdu Mohammed y Solomon Alemneh Adimass, 2024, “Review on the impact behavior of natural fiber epoxy based composites”, Heliyon, vol. 10, núm. 20, e39116, doi: 10.1016/J.HELIYON.2024.E39116.
Shenoy Heckadka, Srinivas, Suhas Yeshwant Nayak y Rashmi Samant, 2022, “Mangifera indica mid-rib fibers as reinforcements for CNSLEpoxy Composites”, The Journal of The Textile Institute, vol. 113, núm. 4, doi:10.1080/00405000.2021.1898137.
Shireen, Farah, Bashir Ahmad, et al., 2022, “Antimicrobial, Antioxidant and Phytotoxic Assessment of Agave Americana, Mentha Spicata and Mangifera Indica L. Extract”, Arab Gulf Journal of Scientific Research, vol. 39, núm. 4, doi:10.51758/AGJSR-04-2021-0031.
Silva Brito, Flávia Maria, et al., 2020, “Technological characterization of particleboards made with sugarcane bagasse and bamboo culm particles”, Construction and Building Materials, vol. 262, 120501, doi:10.1016/J.CONBUILDMAT.2020.120501.
Singh, Sugandha, Manas K. Ghorai y Kamal K. Kar, 2021, “Fly ash-reinforced epoxy composites”, Handbook of fly ash, doi:10.1016/B978-0-12-817686-3.00002-5.
Tarrsini, Mahadevan, et al., 2023, “Structural and composition modification of Harum Manis mango (Mangifera indica) Leaves via Chemical Pretreatment for Bioethanol Production”, Biomass conversion and biorefinery, vol. 13, núm. 5, doi: 10.1007/S13399-021-01469-Y.
Uppal, Neha, et al., 2022, “Cellulosic fibres-based epoxy composites: from bioresources to a circular economy”, Industrial Crops and Products, vol. 182, 114895, doi:10.1016/J.INDCROP.2022.114895.

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.